北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能材料市场正文

当前石墨烯三大研究热点:储能、电化学、安全性

2015-05-14 08:40来源:新材料产业作者:新材料产业关键词:石墨烯锂电池储能材料收藏点赞

投稿

我要投稿

石墨烯的生物安全性

对细胞毒性方面的研究。对石墨烯及其复合材料的细胞毒性的分析研究有助于判断其生物安全性程度。中国科学院上海应用物理研究所的黄庆课题组一直关注对石墨烯细胞毒性的研究,并已经发表了一系列的研究成果著作。课题组通过大量实验,发现细胞在与不同浓度下的石墨烯氧化物(GO)纳米片层进行混合后,只表现出了细胞活性的升降,细胞并未因GO浓度的不同而死亡,可见GO具有良好的生物相容性。另一方面,相同浓度的GO和还原型石墨烯氧化物(rGO)则表现出了不同的细胞毒性,而不同氧化程度的石墨烯其细胞毒性也随之不同。Hu等人研究发现,由于GO材料具有良好的吸附性,可以吸附细胞培养基中的蛋白形成包覆层,抑制其与细胞膜的相互作用,以减少GO的细胞毒性。有其他研究则显示出了GO的尺寸大小会对其细胞毒性有较大的影响,即尺寸越小的GO,其细胞毒性也越小。目前,有少数研究者认为GO对细胞的毒性很可能来源于材料与细胞膜之间的相互作用,但学界尚未对石墨烯材料和细胞膜相互作用的方式和机制进行深入研究。随着石墨烯及其复合材料被作为载药材料的现象越来越多,研究者也开始广泛关注其材料自身和血液的相互兼容性。

对动物毒性方面的研究。石墨烯及其复合材料的动物毒性是学界的研究焦点之一。已经有研究发现了GO对哺乳动物的肺脏器官具有毒性;但同时也有研究表明,通过对GO的修饰可以在某种程度上避免其对哺乳动物的肺产生毒性。除此之外,一些学者还分析研究了产生动物毒性的相关因素,另一些人则对比了不同条件下GO的动物毒性,并综合GO的动物毒性与其在细胞内部的电子传递过程进行研究。在正常环境里,机体内部的过氧化氢(H2O2)有限,且细胞色素c作为生物氧化过程中的电子传递体,已经附着在细胞线粒体内壁上,而GO催化出的少量H2O2并不会引发细胞色素c的泄露,诱导细胞凋亡。但在氧化应激环境中,由于生物体内的电子传递过程,GO可将大量电子传递给氧分子,生成了大量H2O2,在细胞内部累积到一定程度后,引起细胞色素c泄露,细胞最终也无法避免凋亡的结果。

对微生物抗菌性方面的研究。石墨烯及其衍生物不仅具有良好的生物相容性,还在与微生物的相互作用中展示出突出的抗菌性。黄庆课题组于2010年第一次揭示了石墨烯材料的抗菌性能,实验数据证明,在掺杂石墨烯纳米液的培养基中,大肠杆菌的存活率仅有约10%。目前,对石墨烯及其复合材料的抗菌性研究主要聚焦在以下两方面:一方面,由于石墨烯的多环芳香烃(Polycyclic Aromatic Hydrocarbons,PAH)结构具有优异的化学修饰功能,学界一直致力于将石墨烯应用于制造抗菌材料,探究出能够规模化制备新型复合纳米抗菌材料的方法。另一方面,研究人员则通过对比不同氧化程度的石墨烯的抗菌性,深入探索分析石墨烯材料的抗菌原理和作用机制,以期能够为最大程度实现石墨烯的抗菌功能提供参考。

石墨烯材料的发现意义非凡,甚至预示着新一轮碳化学革命的兴起,引发了科学家极大的研究兴趣。石墨烯具备良好的导电导热性、光透性、抗菌性,且比表面积大等特点,在储能、电化学分析等方面都表现出了良好的应用前景,值得学界继续关注研究。然而,石墨烯在市场化和产品化的过程中还存在许多有待解决的问题,石墨烯的工业生产迄今仍未实现,其规模化的制备、功能化的用途还需深入探究,科学家们应对石墨烯进行系统化研究,以促进石墨烯各方面性能的进步,推动其产品化、商业化的进程。

原标题:当前石墨烯三大研究热点:储能、电化学、安全性
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

石墨烯查看更多>锂电池查看更多>储能材料查看更多>