登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
日前,西北工业大学材料学院纳米能源材料研究中心谢科予副教授以第一作者、魏秉庆教授作为通讯作者在材料领域顶级期刊Advanced Materials(影响因子18.96)上发表题为“Ferroelectric-Enhanced Polysulfide Trapping for Lithium-Sulfur Battery Improvement”的研究论文(Advanced Materials, 2016, DOI: 10.1002/adma.201604724)。谢科予副教授及其合作者创新性地提出采用“铁电效应”来抑制锂硫电池多硫化物的穿梭效应,为锂硫电池循环稳定性的提升开辟了全新的研究方向。该研究成果得到了审稿人的高度评价“The work is definitely publishable since it opens a new direction for research in this area. I expect many researchers will plunge into this direction and eventually lead to the breakthrough in this area”。同时,该研究成果也多次受到MaterialsViews(http://www.materialsviewschina.com/2016/12/the-ferroelectric-effect-the-inhibition-of-polysulfide-for-lithium-sulfur-batteries-shuttle-effect-of-the-new-policy/)和X-MOL(http://www.x-mol.com/news/4283)等专业科研媒体的报道。
锂硫电池理论能量密度高达2600 Wh kg-1,是未来最具应用前景的新型二次电池之一。但其充放电过程中的中间产物在电解液中具有一定的溶解性,易扩散到负极,并与锂金属反应,造成正极活性物质损失,并腐蚀锂负极,严重影响了电池的循环稳定性,成为制约其商业化应用最关键问题。该工作借鉴了铁电材料与光催化领域的最新研究进展,简单地将铁电材料BaTiO3作为添加剂加入到正极浆料之中,利用纳米BaTiO3自发极化特性吸附同样为极性的中间产物,显著提升锂硫电池的循环稳定性。比其他思路,该方法操作简单,可无缝衔接到目前锂电池电极制造工艺之中,适合工业化生产。
近年来,谢科予副教授带领其硕士研究生(魏文飞、于浩然、张坤、游悠、原凯等)围绕新能源材料与器件开展了系统科研工作,发表相关论文10余篇,其中包括Advanced Materials论文3篇(Advanced Materials, 2014, 26, 3592;Advanced Materials 2015, 27, 5936;Advanced Materials, 2016, DOI: 10.1002/adma.201604724;2篇以西北工业大学为第一单位与通讯单位,1篇合作参与)。该系列研究工作也得到了国家自然科学基金面上、青年基金等项目资助。
谢科予副教授所在纳米能源材料人才特区在学校的大力支持下于2014年6月依托材料学院成立。中心以国家“千人计划”特聘教授魏秉庆担任中心主任、首席科学家。该特区自成立以来,取得丰硕科研成果,先后承担国家级项目12项,多次在Advanced Materials(影响因子18.96)、Progress in Materials Science(影响因子27.417)和Chemical Society Reviews (影响因子33.38)等高水平期刊上发表论文。
延伸阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,瑞泰新材3月22日在互动平台回复投资者称,在新型电池材料方面持续性地进行了相关研发与积累,在固态电池、锂硫电池以及钠离子电池等新型电池方面皆有相应布局。公司与国内外多家固态锂离子电池相关企业均有合作,公司生产的双三氟甲基磺酰亚胺锂(LiTFSI)已批量应用于固态锂离子电
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
正极材料竞争升级,锰、硫技术路线谁能突围?2025年,固态电池产业正在经历更为深刻的变革。固态电池技术的推进、规模化制造需求的提升,以及终端市场对高性能电池的需求不断增长,共同驱动着以锰系、硫系为代表的新型正极材料体系加速成型,传统锂电池正极材料体系迎来重大革新。当前,9系高镍三元材
北极星储能网获悉,近日一则报道引起讨论,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池,该项研究成果已于1月16日发表在国际学术期刊《自然》,固态电池又迎来一轮热度。据统计,2025年以来,
据了解,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。16日,相关研究成果在国际学术期刊《自然》上发表。
北极星储能网获悉,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。该项研究成果已于1月16日发表在国际学术
北极星储能网获悉,12月2日,全球第四大车企Stellantis集团官微宣布,董事长接受了唐唯实(CarlosTavares)辞去其Stellantis集团首席执行官职务的请求,该辞呈立即生效。据悉,唐唯实曾先后在雷诺、日产、标致雪铁龙等多家知名车企任职。2013年,唐唯实在掌管PSA集团期间,主导了PSA(标致雪铁龙集团)和
北极星储能网获悉,8月28日,中国科学院青岛生物能源与过程研究所发布全固态电池高容量正极材料取得重要进展。资料显示,硫化物全固态电池具有高能量密度、快速充放电、低温性能优异以及高安全性、长寿命等优点,解决了液态锂电池能量密度低、易燃易爆等一系列问题,展现了其在电动汽车和其他领域的应
5月29日,中国能建2024年电化学储能产业发展论坛暨储能新产品发布会在武汉成功举办。本次论坛由中国能源建设集团有限公司(简称“中国能建”)主办,由中国能建集团装备有限公司(简称“中能装备”)、中能建储能科技(武汉)有限公司(简称“中储科技”)承办。来自业内专家学者和集团内部先进企业的
天力锂能4月16日在投资者互动平台表示,公司2023年研发投入占比接近往年水平,暂未研发锂硫电池。
2023年是国内锂电池产业链企业走向海外的一年。随着中国企业全球化落子提速,电动汽车市场减速的背景下,2024年将是全球新能源产业链争霸白热化的一年,中韩两国电池之争“厮杀正酣”。(本文来源:微信公众号起点锂电ID:weixin-lddsj作者:张清辉)2023年,中企拉大了与韩企的差距,前者市占率已突破
北极星储能网获悉,8月28日,中国科学院青岛生物能源与过程研究所发布全固态电池高容量正极材料取得重要进展。资料显示,硫化物全固态电池具有高能量密度、快速充放电、低温性能优异以及高安全性、长寿命等优点,解决了液态锂电池能量密度低、易燃易爆等一系列问题,展现了其在电动汽车和其他领域的应
北极星电池网获悉,近日,厦门大学董全峰教授团队在锂硫电池硫转化的内生机制研究中取得重要进展。锂硫电池由于其高理论能量密度(2600Wh/kg)、环境友好、硫储量丰富等优点而被认为是最有潜力的下一代高能量密度储能体系。然而,锂硫电池在硫到硫化锂的复杂转换过程中存在着可溶性中间体的穿梭效应以
据媒体报道,日前《自然通讯》公布了美国能源部下属阿贡国家实验室成功开发并测试了全新锂硫电池。研究人员表示,其开发出的电池原型拥有700次的充放电循环次数,且能量密度有机会做到2600Wh/kg,这一电池的能量密度是当前4680电池的10倍左右。“现在是磷酸铁锂和三元锂电池,2022-2025年是固态电池和
碳中和目标下,储能万亿市场正在大幕拉开,于技术创新上亦在持续推进。自有关部门出于安全性能考虑,限制三元电池在储能领域的应用后,磷酸铁锂成为电池储能的主力军。然而,磷酸铁锂能量密度天花板低、低温性能差、材料成本较高的痛点仍未解决。一方面,大储项目往往布局在极端气候地区,要求在高低温
锂硫电池因为具有极高的能量密度和理论比容量,而且作为正极主要材料的单质硫储量丰富、生产成本较低,被认为是未来储能领域中最具应用前景的一类电池。但是在其实际应用之前还有一些技术难题亟待解决,比如活性材料硫的导电性差、正极体积膨胀、穿梭效应等问题严重影响了电池的循环稳定性,尤其是可溶
据外媒报道,一家总部位于日本的公司GreenScienceAlliance正在开发下一代电池技术。据称比起目前使用的锂离子电池,这种电池更加耐用、成本更低。(图片来源:GreenScienceAlliance)对于能源储存、发电和电动汽车来说,生产可充电电池具有重要意义。因此,DrRyoheiMori和HiromichiItani开发了一种真正
2021年2月24日,MITTechnologyReview一年一度的“十大突破性技术”榜单正式发布。本年度MITTechnologyReview“十大突破性技术”分别为:mRNA疫苗、生成式预训练模型、数据信托、锂金属电池、数字接触追踪、超高精度定位、远程技术、多技能型人工智能、TikTok推荐算法和绿色氢能。
经过几十年的发展,锂离子电池能量密度的提升速度已明显放缓,并逐渐接近理论极限。与此同时,固态电池、钠离子电池、锂硫电池、燃料电池等新型储电和发电体系快速发展,开始为各种应用场景提供更多选项。(来源:微信公众号:锂电前沿ID:lidianqy作者:赵维杰)在此次由《国家科学评论》(NationalSc
一直以来通过配制高浓度电解液被认为是遏制锂硫电池中穿梭效应的有效方法。但近日,中南大学吴飞翔等人的研究表明,低浓度的电解液实际上能很好的缓解穿梭效应。通过分子动力学模拟为低浓度电解液良好的电化学性能提供了理论依据。相关论文以题为“BoostingHigh-PerformanceinLithiumSulfurBatteriesvi
无人机、电动汽车、电动飞机等实现“长续航”,一直是人们热切期盼的事。然而,由于缺乏具有稳定“储能”与“供电”能力的电源系统,这一期待总是会落空。值得欣慰的是,最近传来了好消息——利用3D打印技术或可助力解决“长续航”面临的瓶颈问题。日前,苏州大学能源学院教授孙靖宇与中国科学院院士、
“开新能源汽车常常担心半路没电,手机打了两把游戏就不得不插上充电宝……”现如今,人们随着生活节奏的加快,迫切希望电子产品的电量充足,能够超长续航、超长待机。目前市场上的锂电池能量密度普遍偏低,电池稳定性和精确性很难控制,同时还存在成本高、污染重等问题。“智能手机大小版本的电池可为
北极星电池网获悉,近日,厦门大学董全峰教授团队在锂硫电池硫转化的内生机制研究中取得重要进展。锂硫电池由于其高理论能量密度(2600Wh/kg)、环境友好、硫储量丰富等优点而被认为是最有潜力的下一代高能量密度储能体系。然而,锂硫电池在硫到硫化锂的复杂转换过程中存在着可溶性中间体的穿梭效应以
锂硫电池因为具有极高的能量密度和理论比容量,而且作为正极主要材料的单质硫储量丰富、生产成本较低,被认为是未来储能领域中最具应用前景的一类电池。但是在其实际应用之前还有一些技术难题亟待解决,比如活性材料硫的导电性差、正极体积膨胀、穿梭效应等问题严重影响了电池的循环稳定性,尤其是可溶
随着科学技术的逐渐进步,人们对能源存储与转化的要求逐渐提高,传统锂离子电池已经不能满足人们对于电池储能的高要求,于是新的挑战者——全固态电池入场。全固态电池的优势传统的锂离子电池主要由正极、负极、隔膜、电解液、结构壳体等部分组成,而全固态电池顾名思义就是电池里没有气体、液体,所有
一直以来通过配制高浓度电解液被认为是遏制锂硫电池中穿梭效应的有效方法。但近日,中南大学吴飞翔等人的研究表明,低浓度的电解液实际上能很好的缓解穿梭效应。通过分子动力学模拟为低浓度电解液良好的电化学性能提供了理论依据。相关论文以题为“BoostingHigh-PerformanceinLithiumSulfurBatteriesvi
无人机、电动汽车、电动飞机等实现“长续航”,一直是人们热切期盼的事。然而,由于缺乏具有稳定“储能”与“供电”能力的电源系统,这一期待总是会落空。值得欣慰的是,最近传来了好消息——利用3D打印技术或可助力解决“长续航”面临的瓶颈问题。日前,苏州大学能源学院教授孙靖宇与中国科学院院士、
科技的不断进步对锂离子电池技术提出了更高的要求,尤其是在电动汽车等大规模储能领域,需要能量密度更高、价格更便宜的新型锂离子电池。其中,锂硫电池作为一种多电子反应的锂离子电池,其能量密度(2600Wh/kg)和价格优势远远高于目前的磷酸铁锂和钴酸锂等商用电池,因此引起了人们的广泛关注。但是
锂硫电池具备更高能量密度、更长效动力、更低成本且环保优势明显,目前国内外相关机构都有研究,其商业化应用前景可期。但目前还面临“穿梭效应”等技术障碍,未来能否在众多电池技术中脱颖而出仍待观察。近日,锂硫电池技术研发接连取得突破:澳大利亚莫纳什大学开发出超高容量的锂硫电池,其性能是锂
看过《星际穿越》的朋友们都知道,影片里面有这样一个片段,外星球一小时等于地球七年。男主曾经和女儿说过,他会以接近光速的速度在星际中旅行。这是科幻电影中很常用的一个科幻理论,最早源自于爱因斯坦提出的狭义相对论:当你的速度越快,越接近光速,时间就越慢。如此下去,我们是不是可以减缓衰老
据报道,郑州大学、清华大学和斯坦福大学的研究人员,联手开发液体锂硫和锂硒电池系统(简称SELL-S和SELL-Se)。这两种电池采用固体电解质,能量密度有望超过500wh/kg和1000wh/l,具备低的能量成本和良好的电化学循环稳定性,有望应用于规模化储能等领域。这些电池采用Li6.4La3Zr1.4Ta0.6O12(LLZTO)
锂离子电池被广泛应用在人们日常生活领域。随着社会发展,传统锂离子电池已经远不能满足人们对能源存储的需求。锂硫电池(Li-S)由于高的理论比容量和能量密度,以及硫的低成本和环境友好等优势被视为最有应用前景的高容量存储体系之一。然而,锂硫电池的商业化应用仍存在一些技术挑战,如固体硫化物的
人们对便携式电子设备、电动汽车和大型智能电网等需求的不断增长推动了储能技术的快速发展。由于硫具有高的理论比容量、丰富的自然储备、低成本和环境友好等特点,锂硫电池被认为是一类有前景的下一代储能系统。但是硫的导电性差、多硫化物的穿梭效应以及充放电循环中的体积膨胀等问题,仍然制约着锂硫
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!