登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
最典型的材料是LiNi 0.5 Mn 1.5 O 4 , 虽然其比容量仅有146mAh/g, 但由于工作电压可达到4.7V, 能量密度可达到686W h/kg [20,21] . 本课题组 [22] 以板栗壳状的MnO 2为锰源, 通过浸渍方法合成了由纳米级的多面体聚集而成微米球状的尖晶石镍锰酸锂(LNMO)材料. 该结构对电解液的浸入和锂离子的嵌入和脱出十分有利,且可以适应材料在充放电过程中的体积变化, 减小材料颗粒之间的张力. 该研究还发现, 含有微量Mn 3+的LNMO电化学性能更优, 充放电循环80圈后放电比容量还能保持在107mAh/g, 容量保持率接近100%.LiNi 0.5 Mn 1.5 O 4 的比容量衰减制约了它的商业化进程,其原因多与活性材料以及集流体与电解液之间的相互作用相关, 由于电解液在高电位下的不稳定性, 如传统碳酸酯类电解液会在4.5V电压以上氧化分解, 使得锂离子电池在高电压充放电下发生气胀, 循环性能变差.
因此, 高电压正极材料需要解决电解液匹配问题.解决上述问题的方法包括以下3个方面. (1) 材料表面包覆 [23~25] 和掺杂 [26~28] . 例如, Kim等 [28] 近期通过表面4价Ti取代得到LiNi 0.5 Mn 1.2 Ti 0.3 O 4 材料, 透射电子显微镜显示材料表面形成了坚固的钝化层, 因此减少了界面副反应, 30℃下全电池实验结果表明在4.85V截止电压, 200个循环后, 容量保持率提高了约75%. 然而, 单独的表面涂层/掺杂似乎不能提供长期的循环稳定性(如≥500个循环), 在应用中必须考虑与其他策略相结合. (2) 使用电解液添加剂或其他新型电解质组合 [29~31] .
图 3 具有良好电化学稳定性的用于高电压LiNi 0.5 Mn 1.5 O 4 材料的LiFSA/DMC电解液体系. (a) LiFSA/DMC混合电解液中的组分结构示意图; (b) 两种不同配比情况下, 溶剂分子典型平衡轨迹的DFT-MD模拟; (c) 铝电极在LiFSA/DMC混合电解液中的高电压稳定性; (d) 全电池在40°C, C/5倍率下的循环性能 [31] (网络版彩图)
如图3所示, Yamada课题组 [31] 利用简单的LiFSA/DMC(1:1.1, 摩尔比)电解液体系实现了LiNi 0.5 Mn 1.5 O 4 /石墨全电池在40℃温度下循环100次后容量保持90%, 尽管高度浓缩的系统的离子电导率降低了一个数量级(30℃时为约1.1 mS/cm), 但依然保持了与使用商业碳酸酯电解液体系相当的倍率性能. (3) 使用具有离子选择透过性的隔膜 [32~35] . 已经证明使用电化学活性的Li 4+x Ti 5 O 12 膜 [32] 以及锂化Nafion膜与商业PP膜的复合隔膜 [33] 能够极大地改善LiNi 0.5 Mn 1.5 O 4 的循环寿命.
此外, 一些由LiNi 0.5 Mn 1.5 O 4 衍生的新型尖晶石结构高电压材料如LiTiMnO 4 [36] 、LiCoMnO 4 [37,38] 等, 以及橄榄石结构磷酸盐/氟磷酸盐也被广泛研究, 如LiCoPO 4 [39] 、LiNiPO 4 [40] 、LiVPO 4 F [41] 等 [42] .
3.1.2 高容量正极材料
由于锂离子电池负极材料的比容量远高于正极材料, 因此正极材料对全电池的能量密度影响更大.通过简单的计算可知, 在现有的水平上, 如果将正极材料的比容量翻倍, 就能够使全电池的能量密度提高57%. 而负极材料的比容量即使增加到现有的10倍, 全电池的能量密度也只能提高47% [43] .
镍钴锰三元材料中, Ni为主要活性元素, 一般来说,活性金属成分含量越高, 材料容量就越大.低镍多元材料如NCM111、NCM523等能量密度较低, 该类材料体系所能达到的动力电池能量密度为120~180Wh/kg, 无法满足更高的能量密度要求. 高容量正极材料的一个发展方向就是发展高镍三元或多元体系.
高镍多元体系中, 镍含量在80%以上的多元材料(NCA或NCM811)能量密度优势明显, 用这些材料制作的电池匹配适宜的高容量负极和电解液后能量密度可达到300Wh/kg以上 [44] . 但是高镍多元材料较差的循环稳定性、热稳定性和储存性能极大地限制了其应用. 一般认为当镍的含量过高时, 会引起Ni 2+ 占据Li + 位置, 造成阳离子混排, 阻碍了Li + 的嵌入与脱出, 从而导致容量降低 [20,45,46] .另外, 材料表面与空气和电解液易发生副反应、高温条件下材料的结构稳定性差和表面催化活性较大也被认为是导致容量衰减的重要原因 [20,45,47] .
解决上述问题的方法有如下3种.
(1) 对材料进行有效的表面包覆或体相掺杂 [48~50] . 例如, 最近Chae等 [50] 利用湿化学法在NCM811表面包覆了一层N,N-二甲基吡咯磺酸盐,有效地阻隔了材料与电解液界面, 抑制了电解液在高镍三元材料表面的催化分解, 1C倍率下前50圈的平均库仑效率达99.8%, 容量保持率高达97.1%.
(2) 开发具有浓度梯度的高镍三元体系 [51~55] . Sun课题组 [53~55] 采用共沉淀方法制备了具有双斜率浓度梯度三元材料,如图4所示, 这种材料的内部具有更高含量的镍, 有利于高容量的获得和保持, 外层有更高含量的锰, 有利于循环稳定性和热稳定性的提升. 通过Al掺杂, 具有浓度梯度的LiNi 0.61 Co 0.12 Mn 0.27 O 2 在经过3000次循环后,其容量保持率从65%大幅度提高到84%.
(3) 开发与高容量正极材料相适应的电解液添加剂或新型电解液体系 [56~58] .
目前高镍多元材料量产技术主要掌握在日韩少数企业手中, 如日本的住友、户田, 韩国的三星SDI、LG、GS等. 根据不同的应用领域, 材料的镍含量在78~90 mol%, 克容量集中在190~210mA h/g. 各公司正尝试将其应用于电动汽车领域, 其中尤以特斯拉采用的镍钴铝(NCA)受到广泛瞩目. 需要指出的是, NCA和NCM811两种材料在容量、生产工艺等方面具有很多相似性, 松下18650电池正极采用NCA正极, 电池能量密度约为250Wh/kg, 但NCA材料因存在铝元素分布不均、粒度难以长大等问题, 主要应用于圆柱电池领域, 圆柱型电池在在电池管理系统方面需要的技术与成本较高.
除 此 之 外 , 基 于 Li 2 MnO 3 的 高 比 容 量 (200~300mAh/g) 富 锂 正 极 材 料 zLi 2 MnO 3 ˙(1−z)LiMO 2(0
3.2 负极材料
锂离子电池负极材料分为碳材料和非碳材料两大类. 其中碳材料又分为石墨和无定形碳, 如天然石墨、人造石墨、中间相碳微球、软炭(如焦炭)和一些硬炭等; 其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等 [61] .
图 4 Al掺杂的具有双斜率浓度梯度三元材料LiNi 0.61 Co 0.12 Mn 0.27 O 2 [54,55] . (a) TEM EDS元素分析成像; (b) TEM 线性元素扫描分析; (c) Al掺杂和无掺杂的三元材料循环性能对比 (网络版彩图)
负极材料将继续朝低成本、高比能量、高安全性的方向发展, 石墨类材料(包括人造石墨、天然石墨及中间相碳微球)仍然是当前锂离子动力电池的主流选择; 近到中期, 硅基等新型大容量负极材料将逐步成熟, 以钛酸锂为代表的高功率密度、高安全性负极材料在混合动力电动车等领域的应用也将更加广泛. 中远期, 硅基负极材料将全面替代其他负极材料已成为行业共识.
硅基负极材料被认为是可大幅度提升锂电池能量密度的最佳选择之一, 其理论比容量可以达到4000mAh/g以上 [62,63] , 与高容量正极材料匹配后, 单体电池理论比能量可以达到843Wh/kg, 但硅负极材料在充放电过程中存在巨大的体积膨胀收缩效应, 会导致电极粉化降低首次库仑效率并引起容量衰减 [64~67] .
研究者尝试了多种方法解决该问题.
(1) 制备纳米结构的材料, 纳米材料在体积变化上相对较小, 且具有更小的离子扩散路径和较高的嵌/脱锂性能, 包括纳米硅颗粒 [68~70] 、纳米线/管 [71~74] 、纳米薄膜/片 [75~77] 等.
(2) 在硅材料中引入其他金属或非金属形成复合材料, 引入的组分可以缓冲硅的体积变化, 常见的复合材料包括硅碳复合材料 [78~82] 、硅-金属复合材料等 [83~85] . Cui课题组 [81] 通过先后在硅纳米颗粒表面包覆二氧化硅和碳层, 再将二氧化硅层刻蚀之后得到蛋黄蛋壳结构的硅碳复合材料, 如图5所示, 并利用原位透射电镜研究了碳壳与硅核之间的空隙对材料稳定性及电化学性能的影响. 由于蛋黄蛋壳的结构在硅和碳层之间预留了充足的空间, 使硅在嵌锂膨胀的时候不破坏外层的碳层, 从而稳定材料的结构并得到稳定的SEI膜. 在此基础上, 通过对碳包覆之后的纳米颗粒进行二次造粒,在大颗粒的表面再包覆碳膜, 最后刻蚀制备出类石榴的结构 [82] , 复合材料尺寸的增大减小了材料的比表面积, 提高了材料的稳定性, 材料的1000周循环容量保持率由74%提高到97%, 如图5所示.
(3) 选用具有不同柔性、界面性质的黏结剂, 提高黏结作用 [86~88] ; 最近,Choi等 [88] 通过形成酯键使传统黏结剂聚丙烯酸PAA与多聚轮烷环组分PR交联结合得到具有特殊结构的双组分PR-PAA黏结剂, 如图6所示, 很大程度上提高了硅负极在充放电过程中的稳定性.
(4) 采用体积变化相对缓和的非晶态硅材料, 如多孔硅材料等 [89,90] .
图 5 具有蛋黄蛋壳的结构的硅碳复合锂离子电池负极材料 [81,82] . (a) 蛋黄蛋壳的结构合成示意图及TEM图; (b) 类石榴的结构合成示意图; (c) 硅纳米粒子、 蛋黄蛋壳结构硅碳复合材料、类石榴结构硅碳复合材料的循环性能对比 (网络版彩图)
应用方面, 日立Maxell宣布已成功将硅基负极材料应用于高能量密度的小型电池; 日本GS汤浅公司则已推出硅基负极材料锂电池, 并成功应用在三菱汽车上; 特斯拉则宣称通过在人造石墨中加入10%的硅基材料, 已在其最新车型Model 3上采用硅碳复合材料作为动力电池负极材料.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,12月2日,全球第四大车企Stellantis集团官微宣布,董事长接受了唐唯实(CarlosTavares)辞去其Stellantis集团首席执行官职务的请求,该辞呈立即生效。据悉,唐唯实曾先后在雷诺、日产、标致雪铁龙等多家知名车企任职。2013年,唐唯实在掌管PSA集团期间,主导了PSA(标致雪铁龙集团)和
北极星储能网获悉,近日,比亚迪旗下弗迪电池召开工程机械新品发布会,推出三款全新电池产品。其一为集成版,弗迪称其为全球第一款CTB工程机械电池,具有320Wh/L的超高集成度,6年3.5W小时整机寿命,系统循环寿命≥7000次。而且该产品可满足6倍老国标振动要求,可在-40至65°C全温域环境下正常工作,并
北极星储能网获悉,广汽集团12月3日晚间公告,公司拟按评估价格将其持有的15.82%广州巨湾技研有限公司(下称“巨湾技研”)股权转让给公司控股股东广州汽车工业集团有限公司(下称“广汽工业集团”);公司全资子公司广汽资本有限公司(下称“广汽资本”)拟按评估价格将其持有的3%巨湾技研股权转让给
北极星储能网获悉,12月2日,市场调研机构SNEResearch发布最新数据,2024年第三季度全球电动汽车电池装机总量达到258.5GWh。以动力电池销售额为准,宁德时代以28.5%的市场份额稳居全球首位,比亚迪旗下电池制造商FinDreams以12.3%的市场份额位列第三。韩国三大动力电池制造商占23.4%,其中LG新能源市占
北极星储能网获悉,企查查显示,近日,富奥天奇新能源科技(长春)有限公司成立,法定代表人为于东海,注册资本2亿元,经营范围包含:电池制造;电池销售;电池零配件生产;资源再生利用技术研发等。企查查股权穿透显示,该公司由富奥股份、天奇股份间接共同持股。据了解,富奥汽车零部件股份有限公司
北极星储能网获悉,12月2日,通用汽车宣布与LG新能源将延续双方长达14年的电池技术合作伙伴关系,并且合作方形电池的开发。通用汽车表示,根据该协议开发的方形电池技术将为未来的通用汽车电动汽车提供动力。据了解,方形电池具有扁平的矩形形状和坚固的外壳,可在电池模块和电池组中节省空间。这种方
北极星储能网获悉,11月25日,上海发改委公布了新能源城市公交车及动力电池更新补贴、船舶岸电补贴情况。其中2024年第二批581辆新能源公交车报废更新补贴资金,由超长期特别国债安排3951万元。49个2023年度岸电运营补贴项目专项扶持资金,由节能减排专项资金安排1890.3万元。原文如下:关于下达本市202
北极星储能网获悉,11月28日上午,山东美多科技有限公司在其位于山东鄄城的生产基地隆重举行了2.5万吨锂电池回收项目满产仪式。据了解,山东美多科技有限公司成立于2022年9月,由上市公司龙蟠科技董事长石俊峰投资创立。自成立以来,公司始终致力于废旧锂电池回收再利用的研发、生产和销售。此次满产的
12月2日消息,近日,“极氪终身质保电池可免费换”的话题登上了微博热搜位置,引发了大量网友的关注。极氪方面表示,近期我们收到部分用户反馈,车辆存在充电速度变慢、感知电量不准等情况。为此,极氪汽车官方发布了“关于开展极氪001WE86用户,冬季关爱活动的通知”。具体来看,极氪开展了专项的电池
北极星储能网获悉,比亚迪发布2024年11月产销数据。数据显示,2024年11月比亚迪新能源汽车动力电池及储能电池装机总量约为22.472GWh,整体保持稳步增长状态,2024年累计装机总量约为171.210GWh。据了解,比亚迪2023年全年新能源汽车动力电池及储能电池装机累计装机总量约为150.909GWh,至此比亚迪已完
北极星储能网获悉,天眼查App显示,11月26日,东风时代(武汉)电池系统有限公司发生工商变更,宁德时代退出股东行列,同时,该公司法定代表人及多位主要人员均发生变更。据了解,东风时代(武汉)电池系统有限公司成立于2018年4月,注册资本1亿人民币,经营范围为开发和制造动力电池系统,并向客户销
北极星储能网获悉,12月3日晚间,融捷股份披露关于签署重大合同的公告,全资子公司甘孜州融达锂业有限公司(以下简称融达锂业)与甘孜州康定市人民政府签署了《原矿外运合作协议》(以下简称协议),双方就融达锂业康定市甲基卡锂辉石矿(以下简称矿山)开采的原矿进行委外选矿事宜达成协议。协议约定
据高工产业研究院(GGII)不完全统计,2024年1~10月,国内共有48个锂电材料(含四大主材及铜箔)规划项目(含签约、公告、开工),规划投资总额约1359亿元,较2023年下降75%。2024年1~10月中国四大主材及铜箔规划投资金额及项目数量占比数据来源:高工产业研究院(GGII),2024年11月尽管处于行业调整
11月13日,浙江伟明环保股份有限公司和深圳盛屯集团有限公司就福建泉州年产6万吨碳酸锂项目达成战略合作协议。伟明环保拟参股该项目少数股权,并承担项目设备采购安装总承包工作。此前消息显示,盛屯集团年产6万吨锂盐材料加工项目于今年6月落地福建泉州泉港石化工业园区,计划一年左右初步投产,两年
11月6日晚间,深圳新星发布关于全资子公司资产转让签署《补充协议》的公告。根据公司战略发展需要,旨在优化产业结构并剥离不良资产,公司全资子公司松岩新能源材料将六氟磷酸锂项目的相关设备和劳动力转移至赣州市松岩新能源材料有限公司,转让价款为1.6亿元。截至公告披露日,松岩新能源已收到汇凯化
从2023年到2024年,锂电材料企业经历了近两年的周期性洗礼。过去两年,可以看到,产能退坡,上下游产业链重构带动利润重新分配成为行业的主要变化。在此期间,锂电材料企业利润大退坡。根据主要锂电材料上市公司财报数据,从2022年到2023年利润下降了60%,从2023年前三季度到2024年前三季度利润下降70%
杉杉股份11月5日公告,公司于近日收到控股股东杉杉集团有限公司的通知,其所持有的上市公司部分股份,发生被司法冻结、轮候冻结的情况。此次被冻结的股份共计4.3亿股,占上市公司总股本19.08%,占其所持上市股份54.97%,冻结申请人为四川省绵阳市中级人民法院。杉杉集团成立于上世纪90年代,仅仅三年做
相较于传统液态锂电池,固态电池有着优异的安全性和更高的能量密度,因此是被誉为新能源时代的“圣杯”。近期,国内外头部企业不断推进固态电池的研发与应用,行业有望再迎催化。受市场消息带动,11月6日,5家固态电池产业链企业涨停。重磅消息发布近段时间,固态电池产业利好消息不断。长安汽车:长安
近日,《东亚日报》报道了LG化学与中国新能源正极材料巨头容百科技之间的一场专利争议,这一事件迅速成为新能源行业的焦点。根据报道,LG化学向韩国首尔地方法院提起诉讼,指控容百科技的韩国子公司载世能源侵犯其五项韩国专利权。面对这一指控,容百科技通过韩国媒体进行了强有力的反驳。公司明确表示
北极星储能网获悉,近日,天齐锂业披露2024年三季报。报告显示今年前三季度营业收入为100.65亿元,和上年同期相比(同比)减少69.87%;归属于上市公司股东的净利润为-57.01亿元,同比减少170.40%。其中,2024年第三季度单季营收为36.46亿元,同比减少57.48%;归属于上市公司股东的净利润为-4.96亿元,
北极星储能网获悉,近日,贵州振华新材料股份有限公司2024年第三季度报告。公告显示,振华新材前三季度营业收入1,459,327,650.68元,同比减少72.37%,归属上市公司股东的净利润-331,261,643.80元,同比减少981.19%。对此振华新材表示,因受市场竞争加剧、原材料价格波动、开工率不足等因素影响,告期内
北极星储能网获悉,10月30日,宁波容百新能源科技股份有限公司发布2024年第三季度报告。报告显示,第三季度,容百科技主营业务产品总销量3.64万吨,其中三元材料销量超过3.5万吨,同比增长27%,环比增长33%,自2022年以来,市占率持续保持全球第一。同期,容百科技全球三元市占率达到14.4%,相较于第二
北极星储能网获悉,12月3日,商务部发布关于加强相关两用物项对美国出口管制的公告。规定原则上不予许可镓、锗、锑、超硬材料相关两用物项对美国出口;对石墨两用物项对美国出口,实施更严格的最终用户和最终用途审查。原文如下:关于加强相关两用物项对美国出口管制的公告商务部公告2024年第46号根据
北极星储能网获悉,11月27日,中国石油化工股份有限公司金陵分公司、中石化(大连)石油化工研究院有限公司、中国石化炼油销售有限公司与凯金新能源在江苏南京举行战略合作签约仪式,标志着各方开启深度合作。面向未来新能源发展趋势,立足新能源材料创新,凯金新能源此次牵手中石化成员,为新能源材料
北极星储能网获悉,融捷股份11月19日晚间发布公告称,根据战略规划和经营发展的需要,为进一步打通锂电材料上下游产业链,充分发挥产业链协同优势,公司拟投资1亿元设立全资子公司兰州融捷材料科技有限公司,从事锂离子电池负极材料相关业务。融捷股份表示,近年来,负极材料行业处于快速发展阶段,扩
在政策、技术和需求的多重驱动下,今年固态电池市场的热度和产业化进程进一步提升。硫化物固态电解质迎来产业化拐点、叠加以eVTOL为代表的细分领域爆发差异化应用需求,固态电池整体加速从研发迈向产业成果转化,工程化验证又推动了创新工艺、设备的研发与落地。与此同时,车企、电池企业、材料企业、
钠离子电池具有“低温性能好、高倍率、高安全”等优势,可广泛应用在电动二轮车、微型车、储能等市场。随着钠离子电池的商业化量产应用,GGII预计2024年我国钠离子电池出货量超1.5GWh,2025年出货量超4.5GWh,2030年出货量有望超30GWh。按1GWh钠离子电池消耗1500吨负极材料计算,到2030年,我国钠离子
硅基负极材料正在加速商业化应用。10月中旬,辉能科技在2024年巴黎车展上展出“100%硅负极”电池系统。根据德国莱茵实验室的数据,该电池系统在5分钟内可将电量从5%充至60%,8.5分钟充至80%。该电池能量密度达到321Wh/kg,预计年底最高可提升至355Wh/kg。硅基被业内认为是下一代理想的负极材料。据了解
北极星储能网获悉,10月14日晚间尚太科技公告,公司拟以自有资金或自筹资金在马来西亚设立全资孙公司,并投资建设马来西亚年产5万吨锂离子电池负极材料项目(下称“马来西亚项目”)。据披露,上述马来西亚全资孙公司注册资本为1000林吉特或其他等值货币(后续拟进行增资),公司性质为私人有限责任公
近日,江阴高新区年产20万吨低能耗高性能锂电池负极材料项目(二期)完成了开工验线手续,项目正式开工建设。该项目总投资12.6亿元,由江苏华盛锂电与苏州华赢新能源共同投资建设,今年2月该项目一期工程已经开工建设。据了解,该项目主要生产低能耗高性能锂电池负极材料,包括人造石墨负极、硅氧负极、
北极星电池网获悉,9月27日,新能源新材料行业发展交流大会在江苏省常州市武进国家高新区举行。会上,总投资3亿美元的屹创新能源新型镍氢气电池负极材料项目正式落户武高新。此次签约的项目由屹创新能源在园区增加投资,将建设新型镍氢气电池核心负极材料研发、制造基地,达产后将形成15GWh镍氢气电池
北极星储能网获悉,9月24日,华盛锂电发布公告称,公司拟通过自有资金3999.9999万元向江苏浦士达环保科技股份有限公司投资入股,按照6.50元/股的价格认购浦士达定向发行的股份。本次投资后,华盛锂电将直接持有浦士达615.38万股,持股比例为14.68%。华盛锂电称,本次投资旨在抓住新能源汽车对高容量负
作为突破电池能量密度桎梏的助力利器,硅基负极材料产业化进程不断加快。截至目前,包括特斯拉、比亚迪、蔚来、上汽智己、广汽埃安、奔驰、极氪等众多车企都已经开始或即将搭载硅基负极动力电池。宁德时代、亿纬锂能、国轩高科等头部电池厂商也都已布局硅基负极动力电池产品。“硅基负极是未来最有可能
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!