登录注册
请使用微信扫一扫
关注公众号完成登录
3.4 物理信息深度融合的智能电力系统和能源互联网
随着ICT的进步,各类能源系统与互联网技术正在逐步融合进而形成能源互联网[15,39],使得能源与信息间的联系和互动达到前所未有的新高度。如果用互联网思维审视传统电力系统,可以看出后者中各类集中和分散布局的电源通过大规模互联的输配电网络连接千家万户,具有天然的网络化基本特征。事实上,传统电力系统终端用户用电早已实现“即插即用”,电力用户不需要知道它所用的电是哪个电厂发出的,只需根据需要从网上取电,具有典型的开放和共享的互联网特征。另一方面,从互联网思维看传统电力系统,后者还是缺乏灵活调节和储能资源,不适应高比例集中和分布式可再生能源电力的接入,不具备多种能源相互转化的功能,不支持多种一次和二次能源相互转化和互补,综合能源利用效率和可再生能源利用程度提高受到限制。传统电力系统的集中统一的管理、调度、控制系统不适应大量分布式发电,以及发电用电、用能高效一体化系统接入的发展趋势。
在智能电网发展的基础上,物理信息深度融合的智能电力系统与多种能源生产和消费网络如交通网、热力网、燃料网等广泛互联(如图16所示),所形成的能源互联网具有如下3个层次的涵义:
1)以电力系统为核心和纽带,多种能源互联互通的能源网络。通过多能协同互补,满足终端用户多种能源需求,大幅提高能源综合利用效率。
2)能源系统与互联网技术深度融合的信息物理系统。以互联思维和技术改造传统电力系统,广泛应用物联网、大数据、云计算,大幅提升能源电力系统的灵活性、适应性、智能化和运营管理水平,大幅提高接收波动性可再生能源的能力,助力能源转型。
3)以用户为中心的能源电力运营商业模式和服务业态。向用户提供便捷互动的能源、电力、信息综合服务,在满足各种用能需求的同时,为用户创造更多的价值,助力能源市场化和相关产业发展。
因此,促进传统电力系统与信息互联网进一步广泛融合,以互联网思维和技术改造传统电力系统,建设能源互联网,是构建新一代能源系统的关键步骤,也是新一代电力系统的发展方向。事实上,新一代电力系统是新一代能源系统的核心,能源互联网的理念目标和系统架构与新一代能源系统高度契合,能源互联网服务以电力为核心载体,智能电网提供主要基础平台从而可以最大限度地满足消费者的需求。
3.5 技术突破的决定性影响
电力系统的发展与相关技术的进步密不可分,对于新一代电力系统而言,以下方面的技术发展可能对电力系统产生颠覆性影响[40-54]。
1)高效低成本太阳能、风能发电和电网友好技术。此类技术的大规模开发应用,将颠覆传统发电方式,告别化石能源主导电力生产的时代,实现能源生产和消费革命。事实上,自2000年以来随着相关技术的发展,大型地面光伏全生命周期平准化度电成本(levelized cost of energy,LCOE)已下降了85%,同时根据美国能源部(DOE)预计,光伏发电成本2030年前将降至3美分/(kW•h)。由于同火电、水电、核电机组相比,新能源建设周期短,50MW风电项目建设周期约为几个月,MW级光伏电站建设周期不到半年,因此在成本大幅降低的情况下,新能源装机占比将可迅速提高。
2)高效低成本长寿命储能技术。此类技术的规模化广泛应用,将颠覆传统电力系统运行方式,开启全新的电力生产分配新模式,为未来实现高比例乃至100%可再生能源的新一代电力系统奠定基础。2015年磷酸铁锂电池成本价约3000元/(kW•h),2020年预计达到1000元/(kW•h);2016年锂离子电池储能的综合成本接近0.65元/(kW•h),预计2030年达到0.12元/(kW•h),储能系统成本的显著下降将解决新能源发电波动问题。此外,预计到2030年,以锂空气电池为代表的超高比能电池,比能量有望达到8~10kW•h/kg(汽油热值5.94kW•h/kg),此类 超高比能储能技术将有望改变电网发/输/配/用电的形态。
3)高可靠性低损耗电力电子技术。此类技术的推广应用,将逐步取代传统交流输电主导的输配电网,形成直流输配电网和交直流混合输配电网新模式。一方面,SiC和GaN等宽禁带电力电子器件的发展,将推动高压直流输电和直流电网具有更大容量、更高效率和更高可靠性,以其为基础的高压直流断路器也是直流电网的主要组成部分;另一方面,采用新型电力电子元件的交流FACTS装置和交直流能量路由器直接接入电网,具有更高功率体积比和更低损耗,适用于构建直流配电网或作为微电网功率转换装置,将给中低压主动配网和微电网带来革命性变化。
4)高强度低成本环境友好绝缘技术和超导输电技术。此类技术的开发应用将变革传统输电线路和装备。其中,高击穿场强、高非线性、耐高低温、耐电痕化等绝缘材料技术的发展,可以提高设备长期安全性,实现电气设备小型化,显著提高电气设备的工作性能,并与环境和谐发展;超导输电则将为未来电网提供一种全新的低损耗、大容量、远距离电力传输解决方案,超导限流、超导储能等技术将显著提高电网运行的安全可靠性。
5)新一代人工智能技术。以无处不在的传感器和先进ICT技术为基础,以物联网、大数据、云计算、深度学习、区块链等为核心,人工智能技术正在迅速发展。具有应用于电力系统设备管理和系统控制、能量管理和交易等领域的潜力,可能会颠覆传统方式,开启一种全新的自动、自主新模式,有助于新一代电力系统的安全、经济和可靠性的提高。例如,未来分布式光伏、电能替代出力不确定性和电动汽车的时空不确定性将引入更多变量,传统分析方法在系统调度、交易方式、能量管理等方面将面临诸多挑战,人工智能将是解决这一类问题的有力措施。
上述这些方面技术的发展将会对未来电力系统的形态、运行调度和市场交易模式产生重大影响。当然,这些技术的发展和应用与市场需求密不可分的,必须考虑经济性,只有具备充分市场竞争力的技术和装备才能得到广泛应用和发展。
新一代电力系统的发展将会是一个长期过程,因此除了上述技术外,还可能在此期间出现新的、具有重大意义的技术方向。这就要求在构建新一代电力系统时必须充分考虑潜在的技术创新领域,保持对新技术的接纳能力并适时调整系统的相关环节。
4 结论
1)建设清洁低碳、安全高效的新一代能源系统是我国新一轮能源革命的主要目标,能源转型是实现这一目标的关键步骤。
2)电力系统由以化石能源为主向低碳可再生能源为主转型,建设作为新一代能源系统核心的新一代电力系统,将对能源转型目标的实现起关键作用。
3)高比例可再生能源、高比例电力电子装备接入电网,实现多能互补的综合能源生产和供给,在智能电网基础上支持构建能源互联网,是新一代电力系统的显著技术特征,也将带来能源转型中对电力系统的重大技术挑战,为电力系统理论和技术进步带来新的研究方向和发展机遇。
4)包括新一代人工智能在内的几类技术的突破有可能对未来能源电力系统各环节的发展形态、系统整体效率、运行控制方式和运营模式带来变革性、颠覆性影响,也是针对新一代电力系统前瞻性研究的重要方向。
(周孝信 陈树勇 鲁宗相 黄彦浩 马士聪 赵强)
参考文献
[1] 央视网.《巴黎协定》正式生效:中国设定了四大减排目标[EB/OL].北京:CCTV,(2016-11-04)..
[2] 国家发展改革委,国家能源局.能源生产和消费革命战略(2016—2030)[R].北京:国家发展改革委,国家能源局,2016. National Development and Reform Commission,National Energy Administration.The strategy of energy production and consumption revolution (2016—2030)[R].Beijing:National Development and Reform Commission,National Energy Administration,2016(in Chinese).
[3] 国家发展改革委,国家能源局.能源发展“十三五”规划[R].北京:国家发展改革委,国家能源局,2016.National Development and Reform Commission,National Energy Administration.“13th Five-Year” energy development planning[R].Beijing:National Development and Reform Commission,National Energy Administration,2016(in Chinese).
[4] 国家发展改革委,国家能源局.电力发展“十三五”规划[R].北京:国家发展改革委,国家能源局,2016.National Development and Reform Commission,National Energy Administration.“13th Five-Year” electric power development planning[R].Beijing:National Development and Reform Commission,National Energy Administration,2016(in Chinese).
[5] 国家统计局.中华人民共和国2010年国民经济和社会发展统计公报[R].北京:国家统计局,2011.National Bureau of Statistics of the People’s Republic of China.People’s republic of China 2010 national economic and social development statistical bulletin[R].Beijing:National Bureau of Statistics of the People’s Republic of China,2011(in Chinese).
[6] 国家统计局.2015年国民经济和社会发展统计公报[R].北京:国家统计局,2016. National Bureau of Statistics of the People’s Republic of China.People’s republic of China 2015 national economic and social development statistical bulletin[R].Beijing:National Bureau of Statistics of the People’s Republic of China,2016(in Chinese).
[7] 国家能源局.2010年全国电力工业统计数据[R].中国电力企业联合会,2011.
[8] 国家能源局.2015年全国电力工业统计数据[R].北京:国家能源局,2016.
[9] 中国工程院.推动能源生产和消费革命战略研究(一期)[R].北京:中国工程院,2017. Chinese Academy of Engineering.Research on the strategy of promoting the energy production and consumption revolution (A period)[R].Beijing:Chinese Academy of Engineering,2017(in Chinese).
[10] 中国工程院项目组.中国能源中长期(2030、2050)发展战略研究:综合卷[M].北京:科学出版社,2011:30-38. Chinese Academy of Engineering.China’s energy medium and long term (2030,2050) development strategy research:comprehensive volume[M].Beijing:Science Press,2011:30-38(in Chinese).
[11] 刘振亚. 中国电力与能源[M].北京:中国电力出版社,2012:20-50. Liu Zhenya.Electric power and energy in China[M].Beijing:China Electric Power Press,2012:20-50(in Chinese).
[12] 国家发展改革委员会能源研究所.中国2050高比例可再生能源发展情景暨路径研究[R].北京:国家发展改革委员会能源研究所,2015:10-17. Energy Research Institute National Development and ReformCommission.China 2050 high renewable energy penetration scenario and roadmap study[R].Beijing:Energy Research Institute National Development and Reform Commission,2015:10-17(in Chinese).
[13] 周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望:试论三代电网[J].中国电机工程学报,2013,33(22):1-11. Zhou Xiaoxin,Chen Shuyong,Lu Zongxiang.Review and prospect for power system development and related technologies:a concept of three-generation power systems[J].Proceedings of the CSEE,2013,33(22):1-11(in Chinese).
[14] 周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008. Zhou Xiaoxin,Lu Zongxiang,Liu Yingmei,et al.Development models and key technologies of future grid in China[J].Proceedings of the CSEE,2014,34(29):4999-5008(in Chinese).
[15] 周孝信,曾嵘,高峰,等.能源互联网的发展现状与展望[J].中国科学:信息科学,2017,47(2):149-170.Zhou Xiaoxin,Zeng Rong,Gao Feng,et al.Development status and prospects of the energy internet[J].Scientia Sinica Informationis,2017,47(2):149-170(in Chinese).
[16] 陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7. Chen Shuyong,SongShufang,Li Lanxin,et al.Survey on smart grid technology[J].Power System Technology,2009,33(8):1-7(in Chinese).
[17] DOE,USA.The smart grid:an introduction[EB/OL].Washington,DC:Office of Electricity Delivery & Energy Reliability,2007.[2017-12-17]..
[18] European Commission.European smartgrids technology platform:vision and strategy for Europe’s electricity networks of the future[R].London:European Commission,2006:18-19.
[19] Rifkin J.The third industrial revolution:how lateral power is transforming energy,the economy,and the world[M].New York:Palgrave Macmillan,2011:17-19.
[20] DOE,USA.“Grid 2030”:a national vision for electricity’s second 100 years[R].Washington DC:United States Department of Energy,Office of Electric Transmission and Distribution,2003:17-39.
[21] 中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:综合卷[M].北京:科学出版社,2011:24-27. Research Group of Chinese Energy Development Strategy.Research on -and long term (2030,2050) energy development strategy of China:Comprehensive volume[M].Beijing:Science Press,2011:24-27(in Chinese).
[22] 陈国平,李明节,许涛,等.我国电网支撑可再生能源发展的实践与挑战[J].电网技术,2017,41(10):3095-3103. Chen Guoping,Li Mingjie,Xu Tao,et al.Practice and challenge of renewable energy development based on interconnected power grids[J].Power System Technology,2017,41(10):3095-3103(in Chinese).
[23] 国家能源局.2017年风电并网运行情况[EB/OL].北京:国家能源局,(2018-02-01)..
[24] Larsen H H,Sønderberg Petersen L S.Risø energy report 9:non-fossil energy technologies in 2050 and beyond [R/OL].Kongens Lyngby:Risø National Laboratory for Sustainable Energy,Technical University of Denmark,2010..
[25] Tai H,HÓgáin E Ó.Behind the buzz:eight smart-grid trends shaping the industry[J].IEEE Power & Energy Magazine,2009,7(2):96-97.
[26] Ipakchi A,Albuyeh F.Grid of the future[J].IEEE Power & Energy Magazine,2009,7(2):52-62.
[27] 梅生伟,龚媛,刘锋.三代电网演化模型及特性分析[J].中国电机工程学报,2014,34(7):1003-1012.Mei Shengwei,Gong Yuan,Liu Feng.The evolution model of three-generation power systems and acteristic analysis[J].Proceedings of the CSEE,2014,34(7):1003-1012(in Chinese).
[28] 周孝信. 新能源变革中电网和电网技术的发展前景[J].华电技术,2011,33(12):1-3,27. ZhouXiaoxin.Development prospects of power grid and power system technology in changes with renewable energy[J].Huadian Technology,2011,33(12):1-3,27(in Chinese).
[29] 钱照明,张军明,盛况.电力电子器件及其应用的现状和发展[J].中国电机工程学报,2014,34(29):5149-5161. Qian Zhaoming,Zhang Junming,Sheng Kuang.Status and development of power semiconductor devices and its applications[J].Proceedings of the CSEE,2014,34(29):5149-5161(in Chinese).
[30] 孙蔚,姚良忠,李琰,等.考虑大规模海上风电接入的多电压等级直流电网运行控制策略研究[J].中国电机工程学报,2015,35(4):776-785. Sun Wei,Yao Liangzhong,Li Yan,et al.Study on operation control strategies of dc grid with multi-voltage level considering large offshore wind farm grid integration[J].Proceedings of the CSEE,2015,35(4):776-785(in Chinese).
[31] 王志新,吴杰,徐烈,等.大型海上风电场并网VSC-HVDC变流器关键技术[J].中国电机工程学报,2013,33(19):14-26. Wang Zhixin,Wu Jie,Xu Lie,et al.Key technologies of large offshore wind farm VSC-HVDC converters for grid integration[J].Proceedings of the CSEE,2013,33(19):14-26(in Chinese).
[32] 李明节. 大规模特高压交直流混联电网特性分析与运行控制[J].电网技术,2016,40(4):985-991. LiMingjie.Characteristic analysis and operational control of large-scale hybrid UHV AC/DC power grids[J].Power System Technology,2016,40(4):985-991(in Chinese).
[33] 李明节,于钊,许涛,等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术,2017,41(4):1035-1042. Li Mingjie,Yu Zhao,Xu Tao,et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power System Technology,2017,41(4):1035-1042(in Chinese).
[34] 田世明,栾文鹏,张东霞,等.能源互联网技术形态与关键技术[J].中国电机工程学报,2015,35(14):3482-3494. Tian Shiming,Luan Wenpeng,Zhang Dongxia,et al.Technical forms and key technologies on energy internet[J].Proceedings of the CSEE,2015,35(14):3482-3494(in Chinese).
[35] 陈麒宇,Littler T,王海风,等.风电水电协同运行计划的优化(英文)[J].中国电机工程学报,2014,34(34):6074-6082. Chen Qiyu,Littler T,Wang Haifeng,et al.Optimal scheduling for coordinated wind and hydro power generation[J].Proceedings of the CSEE,2014,34(34):6074-6082.
[36] 杨方,白翠粉,张义斌.能源互联网的价值与实现架构研究[J].中国电机工程学报,2015,35(14):3495-3502. Yang Fang,Bai Cuifen,Zhang Yibin.Research on the value and implementation framework of energy internet[J].Proceedings of the CSEE,2015,35(14):3495-3502(in Chinese).
[37] 刘文颖,文晶,谢昶,等.考虑风电消纳的电力系统源荷协调多目标优化方法[J].中国电机工程学报,2015,35(5):1079-1088. Liu Wenying,Wen Jing,Xie Chang,et al.Multi-objective optimal method considering wind power accommodation based on source-load coordination[J].Proceedings of the CSEE,2015,35(5):1079-1088(in Chinese).
[38] Zhou Zhe,Liu Pei,Li Zheng,et al.An engineering approach to the optimal design of distributed energy systems in China[J].Applied Thermal Engineering,2013,53(2):387-396.
[39] 中国发展改革委员会.关于推进“互联网+”智慧能源发展的指导意见[EB/OL].北京:中国发展改革委员会,(2016-02-24)..
[40] Chen Han,Ye Fei,Tang Wentao,et al.A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J].Nature,2017,550(7674):92-95.
[41] 苏荻,邹黎,韩冬冬,等.风光电站储能电池研究综述[J].电测与仪表,2017,54(1):83-88,100. Su Di,ZouLi,Han Dongdong,et al.Summary of the energy storage batteries used in wind and photovoltaic power station[J].Electrical Measurement & Instrumentation,2017,54(1):83-88,100(in Chinese).
[42] 夏定国. “高比能动力电池的关键技术和相关基础科学问题研究”项目介绍[J].储能科学与技术,2017,6(1):165-168. Xia Dingguo.Project “Key technology and basic science problem reach for high energy density lithium batteries”[J].Energy Storage Science and Technology,2017,6(1):165-168(in Chinese).
[43] 柏松,黄润华,陶永洪,等.SiC功率MOSFET器件研制进展[J].电力电子技术,2017,51(8):1-3. BaiSong,Huang Runhua,Tao Yonghong,et al.Development of SiC power MOSFET[J].PowerElectronics,2017,51(8):1-3(in Chinese).
[44] 何亮,郑介鑫,刘扬.GaN功率开关器件的产业发展动态[J].电力电子技术,2017,51(8):44-48. HeLiang,Zheng Jiexin,Liu Yang.Industry development of GaN power devices[J].PowerElectronics,2017,51(8):44-48(in Chinese).
[45] 姚良忠,吴婧,王志冰,等.未来高压直流电网发展形态分析[J].中国电机工程学报,2014,34(34):6007-6020. Yao Liangzhong,Wu Jing,Wang Zhibing,et al.Pattern analysis of future HVDC grid development[J].Proceedings of the CSEE,2014,34(34):6007-6020(in Chinese).
[46] 郭慧,汪飞,张笠君,等.基于能量路由器的智能型分布式能源网络技术[J].中国电机工程学报,2016,36(12):3314-3324. Guo Hui,Wang Fei,Zhang Lijun,et al.Technologies of energy router-based smart distributed energy network[J].Proceedings of the CSEE,2016,36(12):3314-3324(in Chinese).
[47] 赵健康,赵鹏,陈铮铮,等.高压直流电缆绝缘材料研究进展评述[J].高电压技术,2017,43(11):3490-3503. Zhao Jiankang,Zhao Peng,Chen Zhengzheng,et al.Review on progress of HVDC cables insulation materials[J].High Voltage Engineering,2017,43(11):3490-3503(in Chinese).
[48] 丘明. 超导输电技术在电网中的应用[J].电工电能新技术,2017,36(10):55-62. QiuMing.Applications of superconducting power transmission in power grid[J].Advanced Technology of Electrical Engineering and Energy,2017,36(10):55-62(in Chinese).
[49] 刘东,盛万兴,王云,等.电网信息物理系统的关键技术及其进展[J].中国电机工程学报,2015,35(14):3522-3531. Liu Dong,Sheng Wanxing,Wang Yun,et al.Key technologies and trends of cyber physical system for power grid[J].Proceedings of the CSEE,2015,35(14):3522-3531(in Chinese).
[50] 马钊,周孝信,尚宇炜,等.未来配电系统形态及发展趋势[J].中国电机工程学报,2015,35(6):1289-1298. Ma Zhao,Zhou Xiaoxin,Shang Yuwei,et al.Form and development trend of future distribution system[J].Proceedings of the CSEE,2015,35(6):1289-1298(in Chinese).
[51] 张东霞,苗新,刘丽平,等.智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1):2-12.Zhang Dongxia,Miao Xin,Liu Liping,et al.Research on development strategy for smart grid big data[J].Proceedings of the CSEE,2015,35(1):2-12(in Chinese).
[52] 彭小圣,邓迪元,程时杰,等.面向智能电网应用的电力大数据关键技术[J].中国电机工程学报,2015,35(3):503-511. Peng Xiaosheng,Deng Diyuan,Cheng Shijie,et al.Key technologies of electric power big data and its application prospects in smart grid[J].Proceedings of the CSEE,2015,35(3):503-511(in Chinese).
[53] 刘科研,盛万兴,张东霞,等.智能配电网大数据应用需求和场景分析研究[J].中国电机工程学报,2015,35(2):287-293. Liu Keyan,Sheng Wanxing,Zhang Dongxia,et al.Big data application requirements and scenario analysis in smart distribution network[J].Proceedings of the CSEE,2015,35(2):287-293(in Chinese).
[54] 李彬,曹望璋,祁兵,等.区块链技术在电力辅助服务领域的应用综述[J].电网技术,2017,41(3):736-744. Li Bin,Cao Wangzhang,Qi Bing,et al.Overview of application of block chain technology in ancillary service market[J].Power System Technology,2017,41(3):736-744(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星售电网获悉,6月25日,山东烟台市发展改革委发布第144320号:关于“维护碧海蓝天倡议减少碳排放”建议的答复。答复文件提出,加快构建新型能源体系,以总投资超过7000亿元的“千万千瓦级核电基地”“千万千瓦级风电基地”“千万千瓦级光伏基地”“千万吨级LNG基地”建设为引领,高效推进核电机组
北极星售电网获悉,6月25日,山东烟台市发展改革委发布第144322号:关于“高质量推进烟台实施绿色低碳转型”建议的答复。答复提出,能源结构优化方面。一是打造清洁能源示范高地,全国首个大规模近海桩基固定式海上光伏项目成功并网发电,实现山东海上光伏发电零突破,4大核电基地建设梯次推进,222万
进入智能化时代,当每度电都学会“思考”,能源系统的变革才真正开始。今天,在全球能源结构与电力系统转型的浪潮中,人工智能(AI)技术正成为不可或缺的关键“破局者”,让能源系统迎来前所未有的“数字觉醒”。6月20-21日,以“人工智能深化协同,能源科技求索创新”为主题的2025国家能源互联网大会
近日,由清华大学、国家电网公司联合主办的“2025国家能源互联网大会”在杭州圆满落幕。大会以“人工智能深化协同,能源科技求索创新”为主题,聚焦人工智能与能源科技深度协同,汇聚全球能源领域政企领袖、学术权威、技术先锋,共探零碳转型路径,共同研讨绘制数字能源时代的“中国方案”。国能日新作
2025开年以来,国家发改委与能源局连发两道政策“组合拳”,深刻改写储能行业的发展逻辑。2月出台的“136号文”明确不得将储能配置作为新能源项目核准的前置条件,终结了持续8年的“强制配储”模式,4月落地的“394号文”明确要求2025年底前基本实现电力现货市场全覆盖。即将到来的电力市场格局变化,
作为中国电气工程教育的顶尖学府和重要源头、“电气工程及其自动化”专业常年全国第一或A+的清华大学电机工程与应用电子技术系(电机系),承载着近一个世纪的荣光与使命,涌现出了以国家最高科技奖获得者金怡濂院士、“八一勋章”获得者马伟明院士、国家电网公司首任总经理赵希正为杰出代表的一大批学
能源与产业协同转型推进中国式现代化全球能源互联网发展合作组织副秘书长周原冰在全面推进中国式现代化的新征程上,能源与产业转型升级已成为落实“双碳”目标、实现高质量发展、打造国际竞争新优势的关键抓手。今年是“十四五”规划收官之年,也是“十五五”规划谋篇布局之年,值此承前启后的关键节点
近日,辽宁鞍山市人民政府发布关于加强协作合力推进全市电网建设的通知(鞍政办发〔2025〕4号)。其中明确,进一步强化电网建设的规划管理。电网企业要聚焦全市经济社会发展目标,围绕新能源发展、需求预测、电源布局、大电网安全、智慧能源系统建设等电网发展重大问题和能源互联网发展、数字化转型、
6月20日,在2025年国家能源互联网大会上,国网杭州供电公司发布全国首个基于人工智能的配网终端。该配网融合终端硬件上采用小尺寸芯片,支持即插即用,每小时功耗仅7瓦,拥有每秒7万亿次的超强算力。终端以“国网光明大模型”和“DeepSeek”为技术底座,融合自然语言识别模型,具备语音自动转换、知识
2025年6月20日-21日,2025国家能源互联网大会在杭州国际博览中心成功举办。本届大会由清华大学、国家电网公司联合主办,清华大学能源互联网创新研究院、杭州市萧山区人民政府、国网浙江省电力有限公司杭州供电公司、中国能源研究会承办,清华四川能源互联网研究院、清华大学碳中和研究院、清华大学国家
6月20日,清华大学电机系长聘教授、青海大学副校长梅生伟在2025国家能源互联网大会上作《人工智能赋能新型电力系统的探索》的主题演讲,演讲从数学角度出发,讲述了深度学习在电力系统中的应用,分享了数字电力系统的概念及其在电力系统中的应用等。他认为,新型电力系统作为国家战略,其核心特征体现
近期,多座储能电站获最新进展,北极星储能网特将2025年6月23日-2025年6月27日期间发布的储能项目动态整理如下:国内首座大型锂钠混合储能站黑启动试验成功近日,南方电网公司在位于文山壮族苗族自治州的国内首座大型锂钠混合储能站——丘北县宝池储能站圆满完成国内规模最大、电压等级最高的构网型储
北极星碳管家网获悉,6月26日,工信部办公厅印发《关于深入推进工业和信息化绿色低碳标准化工作的实施方案》的通知。要点内容提炼如下:总体要求指导思想:以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大和相关全会精神,贯彻新发展理念,落实中央经济工作会议和全国新型工业化推进大
6月24日,公司党委副书记(主持工作)、董事(法定代表人、代行董事长职责)张玮与中煤新疆公司党委书记、董事李明镜座谈,并见签党委“联合共建”合作协议。中煤新疆公司党委副书记、总经理赵忠证,党委副书记、纪委书记王华党,党委委员、副总经理郑亮,公司党委委员、纪委书记李明宇,党委委员、副
6月26日,浙江省丽水市景宁畲族自治县发展和改革局等4部门发布关于印发《景宁畲族自治县电力负荷管控措施和绿电近零碳微电网群建设补贴实施办法》的通知,对2025年至2028年迎峰度夏(冬)期间,注册地在景宁县,企业有效参与由供电公司发起的移峰填谷、集中检修且拥有独立用电户号、满足计量采集要求的
北极星售电网获悉,6月26日,工业和信息化部办公厅印发《关于深入推进工业和信息化绿色低碳标准化工作的实施方案》的通知。文件提出,加强绿色低碳产业培育标准引领。加快工业绿色微电网、工业领域清洁低碳氢应用、中低温余热余能高效利用、超长寿命高安全性储能电池等多能互补利用标准制修订,加大工
各地氢能发展虽然已取得一定进展,但仍面临一些问题和挑战,涉及基础设施、成本、技术等多个方面,这些方面往往相互交织,有时互为因果。来源:电联新媒作者:郑平近年来,国内多地将发展氢能作为促进产业发展和实现碳达峰、碳中和目标的重要抓手,推出不同层面的氢能发展规划,并投入大量资源推动具体
日前,安阳市生态环境局印发《安阳市“无废城市”建设实施方案(2025—2027年)》(征求意见稿)。文件提出,到2027年底,安阳市“无废城市”制度、市场、技术、监管体系基本完善,主要指标达到省内先进水平,减污降碳协同增效作用初显;安阳市固体废物智慧监管信息平台上线运营,实现五大领域固体废物
6月24日,公司党委副书记(主持工作)、董事(法定代表人、代行董事长职责)张玮与中煤新疆公司党委书记、董事李明镜座谈,并见签党委“联合共建”合作协议。中煤新疆公司党委副书记、总经理赵忠证,党委副书记、纪委书记王华党,党委委员、副总经理郑亮,公司党委委员、纪委书记李明宇,党委委员、副
北极星售电网获悉,6月25日,浙江省发展和改革委员会发布省发展改革委关于省十四届人大三次会议舟40号建议的答复。就建议省发改委、省经信厅、省大数据局等部门,统筹全省数据中心发展需求和新能源资源禀赋,支持普陀建设双循环多能互补绿色算力中心试点项目,并争取进入国家算力大通道。同时,支持普
6月24日上午,国家电投甘肃公司清水绿华50兆瓦风储一体化发电项目全面开工。该项目是国家电投甘肃公司积极践行集团“均衡增长战略”,构建“双碳”绿色产业体系的重要实践成果。作为2025年该公司首个开工建设的新能源项目,该项目实现了产业发展与生态环境的和谐共生,标志着该公司在风、光、储一体化
6月25日,大唐抚州电厂2×1000MW扩建工程项目顺利完成首罐混凝土浇筑,标志着该项目如期进入开工建设阶段。作为国家支持浙闽粤原中央苏区和革命老区振兴发展重点项目以及国家能源局“十四五”电力规划重点项目和江西省重点能源工程。大唐江西分公司瞄准新一代煤电机组发展需求,全力打造“和谐生态、高
北极星风力发电网讯:6月26日,全球风能理事会(GWEC)20周年庆典在葡萄牙里斯本举行。远景能源凭借在再生能源领域持续的创新、卓越的全球市场领导力及对全球零碳转型的坚定承诺,荣获GWEC“行业领军者”大奖(SegmentChampionsAward)。这一殊荣不仅是对远景能源技术实力的有力认可,更是对其推动全球
为进一步贯彻落实《氢能产业发展中长期规划》要求,引导行业健康有序发展,国家能源局组织行业相关机构和专家编制了《中国氢能发展报告(2025)》(以下简称《报告》)。4月28日,国家能源局能源节约和科技装备司副司长徐继林在解读《报告》时称,发展氢能产业对加快规划建设新型能源体系,实现碳达峰
北极星氢能网获悉,6月18日,龙海区人民政府与厦门大学嘉庚创新实验室就“海上未来能源科学中心——厦漳海岛绿氢科研示范工程”进行签约,双方将打造可再生能源与氢能全方位综合利用解决方案和示范场景,共同开展关键技术攻关、高层次复合型人才培养和产业应用示范推广工作。据悉,该项目选址落地龙海
近期,多座储能电站获最新进展,北极星储能网特将2025年6月23日-2025年6月27日期间发布的储能项目动态整理如下:国内首座大型锂钠混合储能站黑启动试验成功近日,南方电网公司在位于文山壮族苗族自治州的国内首座大型锂钠混合储能站——丘北县宝池储能站圆满完成国内规模最大、电压等级最高的构网型储
6月26日,由中国国家能源局、浙江省人民政府联合举办的上海合作组织能源部长会及配套活动在浙江宁波举办。会上发布的《中国—上海合作组织可再生能源合作报告2024》显示,截至2024年底,上合组织国家可再生能源发电装机达23.1亿千瓦,约占全球的一半,能源转型步伐不断加快。中国与上合组织国家可再生
6月20日,北极星太阳能光伏网发布一周要闻回顾(2025年6月23日-6月27日)。政策篇新疆136号文承接方案:增量电价0.15-0.262元/kWh、存量0.25-0.262元/kWh6月25日,新疆发改委官网发布文章《深化新能源上网电价市场化改革助力新能源高质量发展》及《自治区贯彻落实深化新能源上网电价市场化改革实施方案
贸易战背景下,中越地理位置可能成为深层次能源合作的基础。(来源:微信公众号“能源新媒”作者:罗佐县)中越两国山水相邻,双方经济社会联系交往紧密,有着深厚的历史渊源。近年越南通过大力推动对外开放、依托人口红利和接纳产业转移等手段成功实现了经济腾飞,成为东南亚乃至全球经济增长最快的经
北极星碳管家网获悉,6月26日,工信部办公厅印发《关于深入推进工业和信息化绿色低碳标准化工作的实施方案》的通知。要点内容提炼如下:总体要求指导思想:以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大和相关全会精神,贯彻新发展理念,落实中央经济工作会议和全国新型工业化推进大
6月24日,法国参议院投票否决了一项拟暂停新建风能和太阳能项目的提案,为该国可再生能源行业带来暂时缓解。据法国可再生能源工会(SER)表示,这一决定表明风电与光伏技术仍获得法国社会的广泛支持。国会两院意见分歧,能源政策博弈持续该提案此前已获得下议院(国民议会)通过,若参议院亦通过,法国
2005年前后,SmartGrid概念出现,欧美的SmartGrid选择了配网智能化、微电网、分布式电源、虚拟电厂的路径。中国的SmartGrid更强调集中投资,集中管理,特高压+风光大基地。路径没有对错,中国和欧美选择了当时各自合适的发展路线。时过境迁,新型电力系统的挑战,不仅来自“双高”,也就是高比例可再生
准确把握有利条件和战略任务加快构建新发展格局国家发展改革委党组面对国际国内形势深刻复杂变化,习近平总书记高瞻远瞩、审时度势提出构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,并作出系列重要论述。习近平总书记关于构建新发展格局的重要论述高屋建瓴、思想深邃、博大精深,是习
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!