登录注册
请使用微信扫一扫
关注公众号完成登录
3.4 物理信息深度融合的智能电力系统和能源互联网
随着ICT的进步,各类能源系统与互联网技术正在逐步融合进而形成能源互联网[15,39],使得能源与信息间的联系和互动达到前所未有的新高度。如果用互联网思维审视传统电力系统,可以看出后者中各类集中和分散布局的电源通过大规模互联的输配电网络连接千家万户,具有天然的网络化基本特征。事实上,传统电力系统终端用户用电早已实现“即插即用”,电力用户不需要知道它所用的电是哪个电厂发出的,只需根据需要从网上取电,具有典型的开放和共享的互联网特征。另一方面,从互联网思维看传统电力系统,后者还是缺乏灵活调节和储能资源,不适应高比例集中和分布式可再生能源电力的接入,不具备多种能源相互转化的功能,不支持多种一次和二次能源相互转化和互补,综合能源利用效率和可再生能源利用程度提高受到限制。传统电力系统的集中统一的管理、调度、控制系统不适应大量分布式发电,以及发电用电、用能高效一体化系统接入的发展趋势。
在智能电网发展的基础上,物理信息深度融合的智能电力系统与多种能源生产和消费网络如交通网、热力网、燃料网等广泛互联(如图16所示),所形成的能源互联网具有如下3个层次的涵义:
1)以电力系统为核心和纽带,多种能源互联互通的能源网络。通过多能协同互补,满足终端用户多种能源需求,大幅提高能源综合利用效率。
2)能源系统与互联网技术深度融合的信息物理系统。以互联思维和技术改造传统电力系统,广泛应用物联网、大数据、云计算,大幅提升能源电力系统的灵活性、适应性、智能化和运营管理水平,大幅提高接收波动性可再生能源的能力,助力能源转型。
3)以用户为中心的能源电力运营商业模式和服务业态。向用户提供便捷互动的能源、电力、信息综合服务,在满足各种用能需求的同时,为用户创造更多的价值,助力能源市场化和相关产业发展。
因此,促进传统电力系统与信息互联网进一步广泛融合,以互联网思维和技术改造传统电力系统,建设能源互联网,是构建新一代能源系统的关键步骤,也是新一代电力系统的发展方向。事实上,新一代电力系统是新一代能源系统的核心,能源互联网的理念目标和系统架构与新一代能源系统高度契合,能源互联网服务以电力为核心载体,智能电网提供主要基础平台从而可以最大限度地满足消费者的需求。
3.5 技术突破的决定性影响
电力系统的发展与相关技术的进步密不可分,对于新一代电力系统而言,以下方面的技术发展可能对电力系统产生颠覆性影响[40-54]。
1)高效低成本太阳能、风能发电和电网友好技术。此类技术的大规模开发应用,将颠覆传统发电方式,告别化石能源主导电力生产的时代,实现能源生产和消费革命。事实上,自2000年以来随着相关技术的发展,大型地面光伏全生命周期平准化度电成本(levelized cost of energy,LCOE)已下降了85%,同时根据美国能源部(DOE)预计,光伏发电成本2030年前将降至3美分/(kW•h)。由于同火电、水电、核电机组相比,新能源建设周期短,50MW风电项目建设周期约为几个月,MW级光伏电站建设周期不到半年,因此在成本大幅降低的情况下,新能源装机占比将可迅速提高。
2)高效低成本长寿命储能技术。此类技术的规模化广泛应用,将颠覆传统电力系统运行方式,开启全新的电力生产分配新模式,为未来实现高比例乃至100%可再生能源的新一代电力系统奠定基础。2015年磷酸铁锂电池成本价约3000元/(kW•h),2020年预计达到1000元/(kW•h);2016年锂离子电池储能的综合成本接近0.65元/(kW•h),预计2030年达到0.12元/(kW•h),储能系统成本的显著下降将解决新能源发电波动问题。此外,预计到2030年,以锂空气电池为代表的超高比能电池,比能量有望达到8~10kW•h/kg(汽油热值5.94kW•h/kg),此类 超高比能储能技术将有望改变电网发/输/配/用电的形态。
3)高可靠性低损耗电力电子技术。此类技术的推广应用,将逐步取代传统交流输电主导的输配电网,形成直流输配电网和交直流混合输配电网新模式。一方面,SiC和GaN等宽禁带电力电子器件的发展,将推动高压直流输电和直流电网具有更大容量、更高效率和更高可靠性,以其为基础的高压直流断路器也是直流电网的主要组成部分;另一方面,采用新型电力电子元件的交流FACTS装置和交直流能量路由器直接接入电网,具有更高功率体积比和更低损耗,适用于构建直流配电网或作为微电网功率转换装置,将给中低压主动配网和微电网带来革命性变化。
4)高强度低成本环境友好绝缘技术和超导输电技术。此类技术的开发应用将变革传统输电线路和装备。其中,高击穿场强、高非线性、耐高低温、耐电痕化等绝缘材料技术的发展,可以提高设备长期安全性,实现电气设备小型化,显著提高电气设备的工作性能,并与环境和谐发展;超导输电则将为未来电网提供一种全新的低损耗、大容量、远距离电力传输解决方案,超导限流、超导储能等技术将显著提高电网运行的安全可靠性。
5)新一代人工智能技术。以无处不在的传感器和先进ICT技术为基础,以物联网、大数据、云计算、深度学习、区块链等为核心,人工智能技术正在迅速发展。具有应用于电力系统设备管理和系统控制、能量管理和交易等领域的潜力,可能会颠覆传统方式,开启一种全新的自动、自主新模式,有助于新一代电力系统的安全、经济和可靠性的提高。例如,未来分布式光伏、电能替代出力不确定性和电动汽车的时空不确定性将引入更多变量,传统分析方法在系统调度、交易方式、能量管理等方面将面临诸多挑战,人工智能将是解决这一类问题的有力措施。
上述这些方面技术的发展将会对未来电力系统的形态、运行调度和市场交易模式产生重大影响。当然,这些技术的发展和应用与市场需求密不可分的,必须考虑经济性,只有具备充分市场竞争力的技术和装备才能得到广泛应用和发展。
新一代电力系统的发展将会是一个长期过程,因此除了上述技术外,还可能在此期间出现新的、具有重大意义的技术方向。这就要求在构建新一代电力系统时必须充分考虑潜在的技术创新领域,保持对新技术的接纳能力并适时调整系统的相关环节。
4 结论
1)建设清洁低碳、安全高效的新一代能源系统是我国新一轮能源革命的主要目标,能源转型是实现这一目标的关键步骤。
2)电力系统由以化石能源为主向低碳可再生能源为主转型,建设作为新一代能源系统核心的新一代电力系统,将对能源转型目标的实现起关键作用。
3)高比例可再生能源、高比例电力电子装备接入电网,实现多能互补的综合能源生产和供给,在智能电网基础上支持构建能源互联网,是新一代电力系统的显著技术特征,也将带来能源转型中对电力系统的重大技术挑战,为电力系统理论和技术进步带来新的研究方向和发展机遇。
4)包括新一代人工智能在内的几类技术的突破有可能对未来能源电力系统各环节的发展形态、系统整体效率、运行控制方式和运营模式带来变革性、颠覆性影响,也是针对新一代电力系统前瞻性研究的重要方向。
(周孝信 陈树勇 鲁宗相 黄彦浩 马士聪 赵强)
参考文献
[1] 央视网.《巴黎协定》正式生效:中国设定了四大减排目标[EB/OL].北京:CCTV,(2016-11-04)..
[2] 国家发展改革委,国家能源局.能源生产和消费革命战略(2016—2030)[R].北京:国家发展改革委,国家能源局,2016. National Development and Reform Commission,National Energy Administration.The strategy of energy production and consumption revolution (2016—2030)[R].Beijing:National Development and Reform Commission,National Energy Administration,2016(in Chinese).
[3] 国家发展改革委,国家能源局.能源发展“十三五”规划[R].北京:国家发展改革委,国家能源局,2016.National Development and Reform Commission,National Energy Administration.“13th Five-Year” energy development planning[R].Beijing:National Development and Reform Commission,National Energy Administration,2016(in Chinese).
[4] 国家发展改革委,国家能源局.电力发展“十三五”规划[R].北京:国家发展改革委,国家能源局,2016.National Development and Reform Commission,National Energy Administration.“13th Five-Year” electric power development planning[R].Beijing:National Development and Reform Commission,National Energy Administration,2016(in Chinese).
[5] 国家统计局.中华人民共和国2010年国民经济和社会发展统计公报[R].北京:国家统计局,2011.National Bureau of Statistics of the People’s Republic of China.People’s republic of China 2010 national economic and social development statistical bulletin[R].Beijing:National Bureau of Statistics of the People’s Republic of China,2011(in Chinese).
[6] 国家统计局.2015年国民经济和社会发展统计公报[R].北京:国家统计局,2016. National Bureau of Statistics of the People’s Republic of China.People’s republic of China 2015 national economic and social development statistical bulletin[R].Beijing:National Bureau of Statistics of the People’s Republic of China,2016(in Chinese).
[7] 国家能源局.2010年全国电力工业统计数据[R].中国电力企业联合会,2011.
[8] 国家能源局.2015年全国电力工业统计数据[R].北京:国家能源局,2016.
[9] 中国工程院.推动能源生产和消费革命战略研究(一期)[R].北京:中国工程院,2017. Chinese Academy of Engineering.Research on the strategy of promoting the energy production and consumption revolution (A period)[R].Beijing:Chinese Academy of Engineering,2017(in Chinese).
[10] 中国工程院项目组.中国能源中长期(2030、2050)发展战略研究:综合卷[M].北京:科学出版社,2011:30-38. Chinese Academy of Engineering.China’s energy medium and long term (2030,2050) development strategy research:comprehensive volume[M].Beijing:Science Press,2011:30-38(in Chinese).
[11] 刘振亚. 中国电力与能源[M].北京:中国电力出版社,2012:20-50. Liu Zhenya.Electric power and energy in China[M].Beijing:China Electric Power Press,2012:20-50(in Chinese).
[12] 国家发展改革委员会能源研究所.中国2050高比例可再生能源发展情景暨路径研究[R].北京:国家发展改革委员会能源研究所,2015:10-17. Energy Research Institute National Development and ReformCommission.China 2050 high renewable energy penetration scenario and roadmap study[R].Beijing:Energy Research Institute National Development and Reform Commission,2015:10-17(in Chinese).
[13] 周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望:试论三代电网[J].中国电机工程学报,2013,33(22):1-11. Zhou Xiaoxin,Chen Shuyong,Lu Zongxiang.Review and prospect for power system development and related technologies:a concept of three-generation power systems[J].Proceedings of the CSEE,2013,33(22):1-11(in Chinese).
[14] 周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008. Zhou Xiaoxin,Lu Zongxiang,Liu Yingmei,et al.Development models and key technologies of future grid in China[J].Proceedings of the CSEE,2014,34(29):4999-5008(in Chinese).
[15] 周孝信,曾嵘,高峰,等.能源互联网的发展现状与展望[J].中国科学:信息科学,2017,47(2):149-170.Zhou Xiaoxin,Zeng Rong,Gao Feng,et al.Development status and prospects of the energy internet[J].Scientia Sinica Informationis,2017,47(2):149-170(in Chinese).
[16] 陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7. Chen Shuyong,SongShufang,Li Lanxin,et al.Survey on smart grid technology[J].Power System Technology,2009,33(8):1-7(in Chinese).
[17] DOE,USA.The smart grid:an introduction[EB/OL].Washington,DC:Office of Electricity Delivery & Energy Reliability,2007.[2017-12-17]..
[18] European Commission.European smartgrids technology platform:vision and strategy for Europe’s electricity networks of the future[R].London:European Commission,2006:18-19.
[19] Rifkin J.The third industrial revolution:how lateral power is transforming energy,the economy,and the world[M].New York:Palgrave Macmillan,2011:17-19.
[20] DOE,USA.“Grid 2030”:a national vision for electricity’s second 100 years[R].Washington DC:United States Department of Energy,Office of Electric Transmission and Distribution,2003:17-39.
[21] 中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:综合卷[M].北京:科学出版社,2011:24-27. Research Group of Chinese Energy Development Strategy.Research on -and long term (2030,2050) energy development strategy of China:Comprehensive volume[M].Beijing:Science Press,2011:24-27(in Chinese).
[22] 陈国平,李明节,许涛,等.我国电网支撑可再生能源发展的实践与挑战[J].电网技术,2017,41(10):3095-3103. Chen Guoping,Li Mingjie,Xu Tao,et al.Practice and challenge of renewable energy development based on interconnected power grids[J].Power System Technology,2017,41(10):3095-3103(in Chinese).
[23] 国家能源局.2017年风电并网运行情况[EB/OL].北京:国家能源局,(2018-02-01)..
[24] Larsen H H,Sønderberg Petersen L S.Risø energy report 9:non-fossil energy technologies in 2050 and beyond [R/OL].Kongens Lyngby:Risø National Laboratory for Sustainable Energy,Technical University of Denmark,2010..
[25] Tai H,HÓgáin E Ó.Behind the buzz:eight smart-grid trends shaping the industry[J].IEEE Power & Energy Magazine,2009,7(2):96-97.
[26] Ipakchi A,Albuyeh F.Grid of the future[J].IEEE Power & Energy Magazine,2009,7(2):52-62.
[27] 梅生伟,龚媛,刘锋.三代电网演化模型及特性分析[J].中国电机工程学报,2014,34(7):1003-1012.Mei Shengwei,Gong Yuan,Liu Feng.The evolution model of three-generation power systems and acteristic analysis[J].Proceedings of the CSEE,2014,34(7):1003-1012(in Chinese).
[28] 周孝信. 新能源变革中电网和电网技术的发展前景[J].华电技术,2011,33(12):1-3,27. ZhouXiaoxin.Development prospects of power grid and power system technology in changes with renewable energy[J].Huadian Technology,2011,33(12):1-3,27(in Chinese).
[29] 钱照明,张军明,盛况.电力电子器件及其应用的现状和发展[J].中国电机工程学报,2014,34(29):5149-5161. Qian Zhaoming,Zhang Junming,Sheng Kuang.Status and development of power semiconductor devices and its applications[J].Proceedings of the CSEE,2014,34(29):5149-5161(in Chinese).
[30] 孙蔚,姚良忠,李琰,等.考虑大规模海上风电接入的多电压等级直流电网运行控制策略研究[J].中国电机工程学报,2015,35(4):776-785. Sun Wei,Yao Liangzhong,Li Yan,et al.Study on operation control strategies of dc grid with multi-voltage level considering large offshore wind farm grid integration[J].Proceedings of the CSEE,2015,35(4):776-785(in Chinese).
[31] 王志新,吴杰,徐烈,等.大型海上风电场并网VSC-HVDC变流器关键技术[J].中国电机工程学报,2013,33(19):14-26. Wang Zhixin,Wu Jie,Xu Lie,et al.Key technologies of large offshore wind farm VSC-HVDC converters for grid integration[J].Proceedings of the CSEE,2013,33(19):14-26(in Chinese).
[32] 李明节. 大规模特高压交直流混联电网特性分析与运行控制[J].电网技术,2016,40(4):985-991. LiMingjie.Characteristic analysis and operational control of large-scale hybrid UHV AC/DC power grids[J].Power System Technology,2016,40(4):985-991(in Chinese).
[33] 李明节,于钊,许涛,等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术,2017,41(4):1035-1042. Li Mingjie,Yu Zhao,Xu Tao,et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power System Technology,2017,41(4):1035-1042(in Chinese).
[34] 田世明,栾文鹏,张东霞,等.能源互联网技术形态与关键技术[J].中国电机工程学报,2015,35(14):3482-3494. Tian Shiming,Luan Wenpeng,Zhang Dongxia,et al.Technical forms and key technologies on energy internet[J].Proceedings of the CSEE,2015,35(14):3482-3494(in Chinese).
[35] 陈麒宇,Littler T,王海风,等.风电水电协同运行计划的优化(英文)[J].中国电机工程学报,2014,34(34):6074-6082. Chen Qiyu,Littler T,Wang Haifeng,et al.Optimal scheduling for coordinated wind and hydro power generation[J].Proceedings of the CSEE,2014,34(34):6074-6082.
[36] 杨方,白翠粉,张义斌.能源互联网的价值与实现架构研究[J].中国电机工程学报,2015,35(14):3495-3502. Yang Fang,Bai Cuifen,Zhang Yibin.Research on the value and implementation framework of energy internet[J].Proceedings of the CSEE,2015,35(14):3495-3502(in Chinese).
[37] 刘文颖,文晶,谢昶,等.考虑风电消纳的电力系统源荷协调多目标优化方法[J].中国电机工程学报,2015,35(5):1079-1088. Liu Wenying,Wen Jing,Xie Chang,et al.Multi-objective optimal method considering wind power accommodation based on source-load coordination[J].Proceedings of the CSEE,2015,35(5):1079-1088(in Chinese).
[38] Zhou Zhe,Liu Pei,Li Zheng,et al.An engineering approach to the optimal design of distributed energy systems in China[J].Applied Thermal Engineering,2013,53(2):387-396.
[39] 中国发展改革委员会.关于推进“互联网+”智慧能源发展的指导意见[EB/OL].北京:中国发展改革委员会,(2016-02-24)..
[40] Chen Han,Ye Fei,Tang Wentao,et al.A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J].Nature,2017,550(7674):92-95.
[41] 苏荻,邹黎,韩冬冬,等.风光电站储能电池研究综述[J].电测与仪表,2017,54(1):83-88,100. Su Di,ZouLi,Han Dongdong,et al.Summary of the energy storage batteries used in wind and photovoltaic power station[J].Electrical Measurement & Instrumentation,2017,54(1):83-88,100(in Chinese).
[42] 夏定国. “高比能动力电池的关键技术和相关基础科学问题研究”项目介绍[J].储能科学与技术,2017,6(1):165-168. Xia Dingguo.Project “Key technology and basic science problem reach for high energy density lithium batteries”[J].Energy Storage Science and Technology,2017,6(1):165-168(in Chinese).
[43] 柏松,黄润华,陶永洪,等.SiC功率MOSFET器件研制进展[J].电力电子技术,2017,51(8):1-3. BaiSong,Huang Runhua,Tao Yonghong,et al.Development of SiC power MOSFET[J].PowerElectronics,2017,51(8):1-3(in Chinese).
[44] 何亮,郑介鑫,刘扬.GaN功率开关器件的产业发展动态[J].电力电子技术,2017,51(8):44-48. HeLiang,Zheng Jiexin,Liu Yang.Industry development of GaN power devices[J].PowerElectronics,2017,51(8):44-48(in Chinese).
[45] 姚良忠,吴婧,王志冰,等.未来高压直流电网发展形态分析[J].中国电机工程学报,2014,34(34):6007-6020. Yao Liangzhong,Wu Jing,Wang Zhibing,et al.Pattern analysis of future HVDC grid development[J].Proceedings of the CSEE,2014,34(34):6007-6020(in Chinese).
[46] 郭慧,汪飞,张笠君,等.基于能量路由器的智能型分布式能源网络技术[J].中国电机工程学报,2016,36(12):3314-3324. Guo Hui,Wang Fei,Zhang Lijun,et al.Technologies of energy router-based smart distributed energy network[J].Proceedings of the CSEE,2016,36(12):3314-3324(in Chinese).
[47] 赵健康,赵鹏,陈铮铮,等.高压直流电缆绝缘材料研究进展评述[J].高电压技术,2017,43(11):3490-3503. Zhao Jiankang,Zhao Peng,Chen Zhengzheng,et al.Review on progress of HVDC cables insulation materials[J].High Voltage Engineering,2017,43(11):3490-3503(in Chinese).
[48] 丘明. 超导输电技术在电网中的应用[J].电工电能新技术,2017,36(10):55-62. QiuMing.Applications of superconducting power transmission in power grid[J].Advanced Technology of Electrical Engineering and Energy,2017,36(10):55-62(in Chinese).
[49] 刘东,盛万兴,王云,等.电网信息物理系统的关键技术及其进展[J].中国电机工程学报,2015,35(14):3522-3531. Liu Dong,Sheng Wanxing,Wang Yun,et al.Key technologies and trends of cyber physical system for power grid[J].Proceedings of the CSEE,2015,35(14):3522-3531(in Chinese).
[50] 马钊,周孝信,尚宇炜,等.未来配电系统形态及发展趋势[J].中国电机工程学报,2015,35(6):1289-1298. Ma Zhao,Zhou Xiaoxin,Shang Yuwei,et al.Form and development trend of future distribution system[J].Proceedings of the CSEE,2015,35(6):1289-1298(in Chinese).
[51] 张东霞,苗新,刘丽平,等.智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1):2-12.Zhang Dongxia,Miao Xin,Liu Liping,et al.Research on development strategy for smart grid big data[J].Proceedings of the CSEE,2015,35(1):2-12(in Chinese).
[52] 彭小圣,邓迪元,程时杰,等.面向智能电网应用的电力大数据关键技术[J].中国电机工程学报,2015,35(3):503-511. Peng Xiaosheng,Deng Diyuan,Cheng Shijie,et al.Key technologies of electric power big data and its application prospects in smart grid[J].Proceedings of the CSEE,2015,35(3):503-511(in Chinese).
[53] 刘科研,盛万兴,张东霞,等.智能配电网大数据应用需求和场景分析研究[J].中国电机工程学报,2015,35(2):287-293. Liu Keyan,Sheng Wanxing,Zhang Dongxia,et al.Big data application requirements and scenario analysis in smart distribution network[J].Proceedings of the CSEE,2015,35(2):287-293(in Chinese).
[54] 李彬,曹望璋,祁兵,等.区块链技术在电力辅助服务领域的应用综述[J].电网技术,2017,41(3):736-744. Li Bin,Cao Wangzhang,Qi Bing,et al.Overview of application of block chain technology in ancillary service market[J].Power System Technology,2017,41(3):736-744(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月6日,阳泉市能源局关于印发《阳泉市能源领域碳达峰实施方案》的通知,通知指出,大力推进风光新能源建设。充分利用各类国土空间资源,统筹优化布局,梳理全市风光资源现状及开发潜力。坚持集中式与分布式开发并举,全面推进风电、光伏发电大规模开发利用和高质量发展,逐步带动新能源产业链延伸发展
2025年6月10-13日,全球光储行业年度盛会——SNECPVES第十八届(2025)国际太阳能光伏和智慧能源储能及电池技术与装备(上海)大会暨展览会(简称2025SNECPVES国际光伏储能两会)即将震撼开幕!会议时间:2025年6月10-12日会议地点:国家会展中心上海洲际酒店(上海市诸光路1700号)展览时间:2025年6月11-
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
在推动新能源上网电价全面由市场形成的同时,行业面临两大挑战:顶层机制层面,需优化新能源与火电、新型经营主体同台竞价的制度设计;底层技术层面,亟待攻克海量市场主体参与下的优化决策难题。(来源:微信公众号《能源评论》杂志文/钟海旺杨迎作者分别供职于清华大学电机工程与应用电子技术系、清
5月30日,工业和信息化部关于印发《算力互联互通行动计划》的通知,其中提出,推动算力互联在算力资源服务、任务调度、市场交易、开源社区运营等新业态场景应用。推动算力互联在人工智能、科学计算、智能制造、远程医疗、视联网等企业级场景,以及智能驾驶、云渲染、云电脑、云游戏等消费级场景应用。
当前,我国新型电力系统加快建设,新能源逐步向主体电源演进,终端消费电气化水平不断提升,电力远距离配置能力不断增强,新时代电力发展成效显著。与此同时,电力供需平衡压力叠加系统安全稳定风险,电网转型发展问题亟待破解。新时代电网发展要统筹把握好网架结构与支撑电源、新能源与传统机组、交流
5月28日上午,全球能源互联网发展合作组织秘书长伍萱一行到访山东大学,常务副校长吴臻参加会见,共商能源互联网领域产学研协同创新与国际合作新路径。双方就能源政策研究、行业标准建设、复合型人才培养等议题达成多项共识,为推动全球能源可持续发展注入新动能。吴臻系统介绍了山东大学的历史发展、
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
在全球能源变革的十字路口,中国正以“三场替代战役”与“四大突破”为战略支点,开启一场颠覆传统能源格局的深刻变革。这场变革不仅关乎2030碳达峰、2060碳中和的承诺兑现,更将重塑全球新能源产业链的竞争规则。当欧美国家还在能源转型的十字路口徘徊时,中国已用特高压电网贯通山河,以光伏矩阵点亮
当前,我国虚拟电厂发展在各地“多点开花”。以长三角负荷中心为例,浙江组织虚拟电厂多次参与夏季冬季用电高峰期保供,江苏通过空调、热水器等家电聚合形成“虚拟能量池”,上海市聚合的可调节资源最大调节容量等效于一台大型火电机组,虚拟电厂发展逐步由试点示范向规模化发展过渡。然而,虚拟电厂技
习近平总书记强调指出:“加快发展新一代人工智能是我们赢得全球科技竞争主动权的重要战略抓手,是推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源。”所谓人工智能(Artificialintelligence,AI),指的是类人智能,主要研究用于模拟和扩展人的智能的理论和方法、技术和应用系统的一
6月6日,阳泉市能源局关于印发《阳泉市能源领域碳达峰实施方案》的通知,通知指出,大力推进风光新能源建设。充分利用各类国土空间资源,统筹优化布局,梳理全市风光资源现状及开发潜力。坚持集中式与分布式开发并举,全面推进风电、光伏发电大规模开发利用和高质量发展,逐步带动新能源产业链延伸发展
本期主要看点1、国家能源局:分布式光伏、分散式风电等新型经营主体豁免电力业务许可2、第六个!今天起,湖北电力现货市场转正!3、两部门:鼓励引导重点用能单位使用绿电激发全社会绿电消费潜力4、“136号文”过渡政策!山东明确新能源上网电价市场化改革过渡期工作5、2025年1#x2014;4月全国绿证核发
北极星电力网整理了2025年6月3日至2025年6月6日一周火电项目,其中4×1000MW项目环境影响评价公示,2台百万机组项目并网发电,1000MW+2×350MMW+700MW项目投产、投运。【环评】万州电厂二期2×1000MW扩建工程环境影响评价第一次公示近日,国能重庆万州电力有限责任公司重庆公司万州电厂二期扩建工程环
北极星电力网整理了2025年6月3日至2025年6月6日一周火电项目,涉及项目的核准、开工、投运等。宁夏电投石嘴山2×660MW超超临界热电项目初步设计通过审查5月29日至30日,宁夏电投石嘴山2×660MW超超临界热电项目召开外部评审会,初步设计文件顺利通过审查。详情点击榆神榆横2×350MW热电联产工程1号机组
北极星电力网整理了2025年6月3日至2025年6月6日一周电力项目:涉及火电、水电、核电项目的核准、开工、并网等。火电项目宁夏电投石嘴山2×660MW超超临界热电项目初步设计通过审查5月29日至30日,宁夏电投石嘴山2×660MW超超临界热电项目召开外部评审会,初步设计文件顺利通过审查。详情点击榆神榆横2×
6月5日,宁夏银川市人民政府办公室关于印发《银川高新区高质量发展实施方案(2025—2027年)》的通知。文件指出,积极招引动力电池、风机叶片、光伏组件等“新三样”及算力服务器等拆解回收利用项目,鼓励发展“互联网+回收”模式,强化全链条数字化监管,推进循环经济产业与合规化、标准化服务体系深
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
目前,华能集团共5家上市公司,分别是:华能国际、内蒙华电、华能水电、新能泰山、长城证券。一、华能国际华能国际是中国最大的上市发电公司之一,截至2024年底,华能国际发电装机超1.45亿千瓦,其中风电装机1810.9万千瓦、太阳能装机1983.6万千瓦、水电装机37万千瓦、天然气发电装机1350.8万千瓦、生
6月5日,银川市人民政府关于印发《苏银产业园高质量发展实施方案(2025-2027年)》的通知,通知指出,聚焦硅基、碳基材料,高性能纤维材料等领域,依托20GW异质结单晶材料智慧工厂等项目,加速布局新一代异质结专用切片、电池、组件、钙钛矿等光伏材料产业。原文如下:银川市人民政府办公室关于印发《苏
6月5日,汉中市发改委发布汉中市电力高质量发展实施意见(草稿),文件指出,鼓励屋顶分布式项目开发,推动工商业屋顶分布式光伏发展,支持优先采用“自发自用”建设模式,鼓励分布式光伏项目配置储能设施,减小公共电网运行压力。住房城乡建设、发展改革、自然资源、财政、机关事务管理等部门,应当共
6月5日,国新办举行新闻发布会,介绍“深化提升‘获得电力’服务水平全面打造现代化用电营商环境”有关情况。有记者提问“当前供电服务还存在一些薄弱的区域和环节,比如农村偏远地区、孤岛等供电末梢,这些都是供电服务的堵点难点所在。请问,电网企业将采取哪些措施解决这类问题?”,中国南方电网有
据韩国时报报道,随着李在明在6月3日当选韩国总统,他在能源问题上的立场引起了广泛关注。(来源:国际能源小数据作者:ESmallData)韩国大选中关于能源辩论的核心是核能和日益增长的可再生能源,尤其是在人工智能推动下不断攀升的电力需求背景下。选举结果将对该国的能源结构和出口战略产生重大影响。
近日,中国工程院郭剑波院士及国家电网西北分部专家代表一行莅临新疆克州阿克陶县陶园西储能电站,深入调研了克州300MW/1.2GWh构网型独立储能项目的运营情况。郭剑波院士及国家电网西北分部专家代表一行现场调研郭剑波院士及专家团实地考察了克州300MW/1.2GWh构网型独立储能项目现场,详细调研了该站建
6月6日,阳泉市能源局关于印发《阳泉市能源领域碳达峰实施方案》的通知,通知指出,大力推进风光新能源建设。充分利用各类国土空间资源,统筹优化布局,梳理全市风光资源现状及开发潜力。坚持集中式与分布式开发并举,全面推进风电、光伏发电大规模开发利用和高质量发展,逐步带动新能源产业链延伸发展
氢能作为一种清洁、高效的能源载体,以其独特的优势,正在被全球视为未来能源体系的重要组成部分。在“四个革命、一个合作”能源安全新战略的指导下,我国正加快推动氢能全产业链发展。近期,国家能源局发布《中国氢能发展报告(2025)》(以下简称《报告》),《报告》总结了2024年我国氢能产业在生产
近期,华东新华、新疆粤电、江苏日托、江西省水投能源、川投(乡城)新能源最新招聘岗位信息发布,北极星整理见下:华东新华能源投资有限公司成立于2019年5月,系新华水力发电有限公司在江苏省扬州市设立的全资子公司,注册资本金5.75亿元,总资产已超过145亿元。作为新华发电在华东六省一市的区域清洁能
北极星风力发电网从外网获悉:近日,爱尔兰都柏林高等法院作出一项判决,责令位于韦克斯福德郡的GibbetHill风电场永久关闭三台Nordex风机,并判处项目开发商ABOEnergyIreland与投资基金所有者WexwindLimited共同赔偿原告夫妇36万欧元(约合295万元人民币),其中30万欧元用于补偿近12年的噪音滋扰,6万
近日,普洛斯新能源为申通快递量身打造的用户端储能项目正式投入运营,该项目位于申通快递上海转运中心,总容量达2.75MW/5.83MWh。此次部署的储能系统是普洛斯与申通快递在物流园区采用储能保供电服务的首次尝试,不仅助力申通快递提升园区运营稳定性,更为快递物流行业向高效、低碳运营模式转型树立了
作为中国储能行业领先的基于平台技术及人工智能驱动的可再生能源解决决方案及产品提供商之一,我们专注于研发并向我们的客户及/或终端用户提供储能系统解决方案及产品。公司围绕“AI+储能”战略,打造了储能生态产品的全栈技术体系,形成了从设备级控制到系统级优化的完整能力闭环,持续推动储能系统向
北极星储能网获悉,6月1日下午3点49分,位于韩国忠清南道瑞山市大山邑的Kieun-ri光伏储能电站报告称发生了火灾,消防队员奋斗了10小时40分钟,终于将火势扑灭。信息显示,此次火灾造成了储能系统所在建筑物被烧毁,以及部分太阳能电池板被烧毁,所幸没有人员伤亡。(韩国消防局)报道显示,火灾发生在
6月6日,广州电力交易中心发布关于印发广州电力交易中心可再生能源绿色电力证书交易实施细则的通知,其中提到,绿证交易环节分为交易申报、交易结果确认、资金收款确认、绿证分配(如有)、交易结果上报、绿证划转等环节。绿证交易形式分为直接交易和代理交易两种。其中,直接交易是经营主体自身直接购
6月5日,“中国绿证:畅行中国走向世界——绿证走进长三角”活动在上海第三届碳博会上举办。本次活动旨在贯彻落实国家“双碳”目标,推动可再生能源绿色电力证书(以下简称“绿证”)在长三角地区广泛应用,加快绿色电力消费体系建设,助力区域绿色低碳高质量发展。本次活动由北京电力交易中心主办,国
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!