登录注册
请使用微信扫一扫
关注公众号完成登录
图8多能互补网络演化博弈模型
Fig.8Evolutionarygamemodelofmulti-carrierenergysystem
3.3多能互补网络演化的均衡求解与分析
由于多种能源的生产者、消费者、传输者等多主体之间存在竞争、合作等复杂博弈行为,多能互补网络生长演化的动力学模型,即复制者动态方程难以通过普通函数描述,呈现高度非线性,难以求解演化博弈全部均衡解。为此,可采用KKT最优性条件刻画参与者对其他参与者策略的理性反应,将复制者动态方程归结为一类微分互补系统。
对于演化稳定均衡策略,首先采用同伦法在给定范围内寻找该微分互补系统的平衡点,并根据平衡点处雅克比矩阵特征值筛选出稳定平衡点,即演化稳定均衡。其次,通过非线性系统半张量积稳定理论[81]计算每个演化稳定均衡的吸引域,给出系统能够维持结构稳定(即各类能源比例不发生大幅度变化)的扰动范围,精练演化稳定均衡。最后,获得减小物理经济总成本且保证系统安全的多能互补网络演化形态及多能源主体策略形态,供运行规划及调度等部门决策使用。对于非稳定均衡策略,即不稳定平衡点,需分析其失稳原因,给出防范措施,或设计合适的激励机制消除非稳定均衡策略。多能互补网络演化均衡求解与分析思路如图9所示。
图9多能互补网络演化均衡求解与分析思路
Fig.9Evolutionaryequilibriumofmulti-carrierenergysystem
4多能互补网络仿真模拟技术
多能互补网络仿真模拟平台是其建模分析与演化机理研究的必要工具。针对多能互补网络,开发一体化仿真模拟平台的重要性不言而喻。正如前文所述,多能互补网络动态特性复杂,既有纳秒到毫秒级的电网动态,又有分钟级甚至小时级的燃气、热力管网动态;既要考虑单一能源环节内部的动态,也要计及不同能源形式的耦合特性和综合优化;既要考虑人为主观决策因素,也要考虑大量不确定性因素的影响。特别是多能互补网络一体化网络模型及演化博弈模型分别是在固定时间断面和边界条件、长时间过程和变边界条件两种场景下对多能互补网络的模拟,但两者物理上密不可分。
影响多能互补网络运行和生长演化的因素众多,典型者如新能源、主动负荷、市场机制、市场参与者等均伴随着强不确定性,造成多能互补网络一体化网络模型和演化博弈模型具有高维不确定性特征,需要通过大量场景的仿真才能准确刻画其特性。海量场景的仿真导致计算量剧增,传统仿真计算平台难以在有限时间内完成全部仿真。因此,为实现多能互补网络全方位综合仿真模拟,需要突破大规模系统多时空尺度分解协调仿真和海量场景分布式并行仿真等技术难题。
在多能互补网络仿真模拟技术研究方面,首先,基于多Agent构建多能互补系统仿真模拟平台;其次,采用试验系统进行模型校正和平台验证;最后,基于其解决多能互补典型工程问题,包括多能互补网络规划设计、市场运营机制、连锁故障模拟及安全防御等。
4.1多能互补网络仿真模拟平台
在多能互补网络仿真模拟平台研发方面,首先在多能互补网络建模和演化机理基础上,根据多能互补网络的物理信息结构、市场模型和演化机制,设计数据交互接口和通信协议;在一体化模型的基础上编制大规模多能互补网络暂态仿真、稳态潮流分析、市场交易模拟模块;在多能互补动态演化机理的基础上编制5~30年中长期演化过程模拟模块;研发基于多Agent的多能互补网络仿真模拟平台,实现能量流动、信息传递和经济行为的模拟。其次,根据新能源的功率波动特性以及市场个体行为等不确定性设计大量仿真场景,采用场景削减技术压缩仿真模拟的场景数,进而利用并行计算技术对多能互补网络多场景仿真进行加速计算。在此基础上,综合考虑系统综合能效、新能源消纳比例、环境效益等方面因素建立系统状态评估体系,采用深度学习等方法训练系统评价指标,选取系统关键特征量。通过对不同边界条件、演化机制下系统的性能指标进行数据挖掘,形成知识并指导仿真场景的削减,以加速演化模拟过程。
4.2仿真模拟平台测试及工程应用
仿真模拟平台正确性验证是用其指导多能互补网络工程实践的前提,实际多能互补系统运行经验也可为仿真模型校正提供依据。在多能互补网络仿真模拟平台测试方面,首先采用成熟商用仿真软件对仿真平台的物理系统模型进行校准。然后,在仿真模拟平台中建立实际系统模型,对比仿真结果与实测数据,验证仿真平台的正确性。在此基础上,优化和调整仿真平台。
在多能互补网络仿真模拟平台工程应用方面,基于所研发的仿真模拟平台,研究多能互补网络的连锁故障模拟与安全防御技术、规划设计以及运营机制。具体研究内容包括:1)多能互补网络设备多样性、随机性强,故障可能在多个耦合系统交织传播,需要研究连锁故障演变机理和传播路径,进而设计快速安全防御策略;2)基于仿真模拟平台研究多能互补网络的中长期演化过程,提出系统规划设计方法,应用于实际多能互补网络;3)研究多边能源市场的分析与设计问题,探讨适合中国国情的能源交易体系,构建公平、自主、开放的能源市场,促进多能源互补利用与能源效率的提升。
5结语
多能互补网络已成为未来能源系统演化发展的必然趋势,而全球能源互联网将是多能互补网络演化发展的一种形态。本文适逢中国能源革命与电力体制改革的关键期,立足于能源产业发展面临的瓶颈,通过新理论、新方法攻克难题,以推动能源互联网的建设和普及。针对能源互联网的基础设施,即多能互补网络,分析了其运行所关心的建模分析及演化机理基本理论与技术瓶颈问题,详细分析了多能互补网络建模、动态演化机理及仿真三方面关键技术。本文有望为多能互补网络建模分析、规划设计及演化发展等相关研究提供参考。
参考文献
[1]LUNDH,WERNERS,WILTSHIRER,etal.4thgenerationdistrictheating:Integratingsmartthermalgridsintofuturesustainableenergysystems[J].Energy,2014,68:1-11.
[2]LIY,REZGUIY,ZHUH.Districtheatingandcoolingoptimizationandenhancement–Towardsintegrationofrenewables,storageandsmartgrid[J].Renewable&SustainableEnergyReviews,2017,72:281-294.
[3]SCHOTJ,KANGERL,VERBONGG.Therolesofusersinshapingtransitionstonewenergysystems[J].NatureEnergy,2016,1(5):1-7.
[4]里夫金˙杰米.第三次工业革命:新经济模式如何改变世界[M].张体伟,孙豫宁译.北京:中信出版社,2012:46-56.JEREMYRIFKIN.Thethirdindustrialrevolution:howlateralpoweristransformingenergy,theeconomy,andtheworld[M].ZHANGTiwei,SUNYuning(translate).Beijing:CITICPublishingHouse,2012:46-56(inChinese).
[5]WUFF,VARAIYAPP,HUIRSY.Smartgridswithintelligentperiphery:anarchitecturefortheEnergyInternet[J].Engineering,2015,1(4):436-446.
[6]HUANGAQ,CROWML,HEYDTGT,etal.Thefuturerenewableelectricenergydeliveryandmanagement(FREEDM)system:theEnergyInternet[J].ProceedingsoftheIEEE,2010,99(1):133-148.
[7]孙宏斌,郭庆来,潘昭光.能源互联网:理念、架构与前沿展望[J].电力系统自动化,2015,39(19):1-7.SUNHongbin,GUOQinglai,PANZhaoguang.Energyinternet:concepts,architectureandfrontieroutlook[J].AutomationofElectricPowerSystems,2015,39(19):1-7(inChinese).
[8]孙宏斌,郭庆来,潘昭光,等.能源互联网:驱动力、评述与展望[J].电网技术,2015,39(11):3005-3013.SUNHongbin,GUOQinglai,PANZhaoguang,etal.Energyinternet:drivingforce,reviewandoutlook[J].PowerSystemTechnology,2015,39(11):3005-3013(inChinese).
[9]贾宏杰,王丹,徐宪东,等.区域综合能源系统若干问题研究[J].电力系统自动化,2015,39(7):198-207.JIAHongjie,WANGDan,XUXiandong,etal.Researchonsomekeyproblemsrelatedtointegratedenergysystems[J].AutomationofElectricPowerSystems,2015,39(7):198-207(inChinese).
[10]曾鸣,刘道新,李娜,等.综合能源系统的关键经济问题研究[J].华东电力,2013,41(7):1403-1408.ZENGMing,LIUDaoxin,LINa,etal.Keyeconomicissuesinintegratedenergysystem[J].EastChinaElectricPower,2013,41(7):1403-1408(inChinese).
[11]余晓丹,徐宪东,陈硕翼,等.综合能源系统与能源互联网简述[J].电工技术学报,2016,31(1):1-13.YUXiaodan,XUXiandong,CHENShuoyi,etal.AbriefreviewtointegratedenergysystemandEnergyInternet[J].TransactionsofChinaElectrotechnicalSociety,2016,31(1):1-13(inChinese).
[12]马钊,周孝信,尚宇炜,等.能源互联网概念、关键技术及发展模式探索[J].电网技术,2015,39(11):3014-3022.MAZhao,ZHOUXiaoxin,SHANGYuwei,etal.Exploringtheconcept,keytechnologiesanddevelopmentmodelofEnergyInternet[J].PowerSystemTechnology,2015,39(11):3014-3022(inChinese).
[13]周孝信.构建新一代能源系统的设想[J].陕西电力,2015,43(9):1-4.ZHOUXiaoxin.Atentativeideaofbuildingnewgenerationofenergysystem[J].ShaanxiElectricPower,2015,43(9):1-4(inChinese).
[14]周孝信,曾嵘,高峰,等.能源互联网的发展现状与展望[J].中国科学:信息科学,2017,47(2):149-170.ZHOUXiaoxin,ZENGRong,GAOFeng,etal.Developmentstatusandprospectsoftheenergyinternet[J].SciencesinicaInformationis,2017,47(2):149-170(inChinese).
[15]HEMMESK,ZACHARIAH-WOLFJL,GEIDLM,etal.Towardsmulti-sourcemulti-productenergysystems[J].InternationalJournalofHydrogenEnergy,2007,32(10):1332-1338.
[16]KOEPPELG,ANDERSSONG.Reliabilitymodelingofmulticarrierenergysystems[J].Energy,2009,34(3):235-244.
[17]TheEconomists.AmassiveblackoutpromptsquestionsaboutTaiwan’senergypolicy[EB/OL].[2017-11-11].https://www.economist.com/news/asia/21726758-can-it-really-phase-outnuclear-power-massive-blackout-prompts-questions-abouttaiwans-energy.
[18]DepartmentofEnergy.Staffreporttothesecretaryonelectricitymarketsandreliability[EB/OL].[2017-11-11].https://energy.gov/downloads/download-staff-report-secretaryelectricity-markets-and-reliability.
[19]HANSENK,CONNOLLYD,LUNDH,etal.HeatroadmapEurope:identifyingthebalancebetweensavingheatandsupplyingheat[J].Energy,2016,115:1663-1671.
[20]XIONGW,WANGY,MATHIESENBV,etal.HeatroadmapChina:newheatstrategytoreduceenergyconsumptiontowards2030[J].Energy,2015,81:274-285.
[21]JIEP,TIANZ,YUANS,etal.Modelingthedynamicacteristicsofadistrictheatingnetwork[J].Energy,2012,39(1):126-134.
[22]程林,张靖,黄仁乐,等.基于多能互补的综合能源系统多场景规划案例分析[J].电力自动化设备,2017,37(6):282-287.CHENGLin,ZHANGJing,HUANGRenle,etal.Caseanalysisofmulti-scenarioplanningbasedonmulti-energycomplementationforintegratedenergysystem[J].ElectricPowerAutomationEquipment,2017,37(6):282-287(inChinese).
[23]MEIShengwei,LIRui,XUEXiaodai,etal.Pavingthewaytosmartmicroenergygrid:concepts,designprinciples,andengineeringpractices[J].CSEEJournalofPowerandEnergySystems,2017,3(4):440-449.
[24]梅生伟,李瑞.智慧微能源网及工程实践[J].中国人工智能学会通讯.2016,6(10):1-5.MEIShengwei,LIRui.Smartmicroenergygridanditsengineeringimplementation[J].ChineseAssociationforArtificialIntelligenceCommunication,2016,6(10):1-5(inChinese).
[25]GAHLEITNERG.Hydrogenfromrenewableelectricity:Aninternationalreviewofpower-to-gaspilotplantsforstationaryapplications[J].InternationalJournalofHydrogenEnergy,2013,38(5):2039-2061.
[26]王业磊,赵俊华,文福拴,等.具有电转气功能的多能源系统的市场均衡分析[J].电力系统自动化,2015,39(21):1-10.WANGYelei,ZHAOJunhua,WENFushuan,etal.Marketequilibriumofmulti-energysystemwithpower-to-gasfunctions[J].AutomationofElectricPowerSystems,2015,39(21):1-10(inChinese).
[27]ANS.Naturalgasandelectricityoptimalpowerflow[D].Stillwater:OklahomaStateUniversity,2004.
[28]SHAHIDEHPOURM,FUY,WIEDMANT.Impactofnaturalgasinfrastructureonelectricpowersystems[J].ProceedingsoftheIEEE,2005,93(5):1042-1056.
[29]CORREA-POSADACM,Sánchez-MartınP.Securityconstrainedoptimalpowerandnatural-gasflow[J].IEEETransactionsonPowerSystems,2014,29(4):1780-1787.
[30]BADAKHSHANS,KAZEMIM,EHSANM.Securityconstrainedunitcommitmentwithflexibilityinnaturalgastransmissiondelivery[J].JournalofNaturalGasScienceandEngineering,2015,27:632-640.
[31]ZHANGX,SHAHIDEHPOURM,ALABDULWAHABA,etal.Hourlyelectricitydemandresponseinthestochasticday-aheadschedulingofcoordinatedelectricityandnaturalgasnetworks[J].IEEETransactionsonPowerSystems,2016,31(1):592-601.
[32]WANGC,WEIW,WANGJ,etal.Robustdefensestrategyforgas–electricsystemsagainstmaliciousattacks[J].IEEETransactionsonPowerSystems,2017,32(4):2953-2965.
[33]ZHOUY,GUC,WUH,etal.Anequivalentmodelofgasnetworksfordynamicanalysisofgas-electricitysystems[J].IEEETransactionsonPowerSystems,2017,32(6):4255-4264.
[34]LUNDH.Large-scaleintegrationofwindpowerintodifferentenergysystems[J].Energy,2005,30(13):2402-2412.
[35]MEIBOMP,KIVILUOMAJ,BARTHR,etal.Valueofelectricheatboilersandheatpumpsforwindpowerintegration[J].WindEnergy,2007,10(4):321-337.
[36]王成山,洪博文,郭力,等.冷热电联供微网优化调度通用建模方法[J].中国电机工程学报,2013,33(31):26-33.WANGChengshan,HONGBowen,GUOLi,etal.Ageneralmodelingmethodforoptimaldispatchofcombinedcooling,heatingandpowermicrogrid[J].ProceedingsoftheCSEE,2013,33(31):26-33(inChinese).
[37]LIRui,CHENLaijun,YUANTiejiang,etal.Optimaldispatchofzero-carbonemissionmicroEnergyInternetintegratedwithnon-supplementaryfiredcompressedairenergystoragesystem[J].JournalofModernPowerSystemandCleanEnergy,2016,4(4):566–580.
[38]LIRui,CHENLaijun,ZHAOBo,etal.Economicdispatchofintegratedheat-powerenergydistributionsystemwithconcentratingsolarpowerenergyhub[J].JournalofEnergyEngineering,2017,143(5):1-11.
[39]JIANGX,JINGZ,LIY,etal.Modellingandoperationoptimizationofanintegratedenergybaseddirectdistrictwaterheatingsystem[J].Energy,2014,64:375-388.
[40]LUOX,GUANX,LIM,etal.Dynamicbehaviourofonedimensionalflowmultistreamheatexchangersandtheirnetworks[J].InternationalJournalofHeat&MassTransfer,2003,46(4):705-715.
[41]LIZ,WUW,SHAHIDEHPOURM,etal.Combinedheatandpowerdispatchconsideringpipelineenergystorageofdistrictheatingnetwork[J].IEEETransactionsonSustainableEnergy,2015,7(1):12-22.
[42]LINC,WUW,ZHANGB,etal.Decentralizedsolutionforcombinedheatandpowerdispatchthroughbendersdecomposition[J].IEEETransactionsonSustainableEnergy,2017,8(4):1361-1371.
[43]GEIDLM,KOEPPELG,Favre-PerrodP,etal.Energyhubsforthefuture[J].IEEEPowerandEnergyMagazine,2007,5(1):24-30.
[44]GEIDLM,ANDERSSONG.Optimalpowerflowofmultipleenergycarriers[J].IEEETransactionsonPowerSystems,2007,22(1):145-155.
[45]ZHANGX,SHAHIDEHPOURM,ALABDULWAHABA,etal.Optimalexpansionplanningofenergyhubwithmultipleenergyinfrastructures[J].IEEETransactionsonSmartGrid,2015,6(5):2302-2311.
[46]BOZCHALUIMC,HASHMISA,HASSENH,etal.Optimaloperationofresidentialenergyhubsinsmartgrids[J].IEEETransactionsonSmartGrid,2012,3(4):1755-1766.
[47]MANSHADISD,KHODAYARME.Resilientoperationofmultipleenergycarriermicrogrids[J].IEEETransactionsonSmartGrid,2015,6(5):2283-2292.
[48]PAZOUKIS,HAGHIFAMMR,MOSERA.Uncertaintymodelinginoptimaloperationofenergyhubinpresenceofwind,storageanddemandresponse[J].InternationalJournalofElectricalPowerandEnergySystems,2014,61:335-345.
[49]EVINSR,OREHOUNIGK,DORERV,etal.Newformulationsofthe‘energyhub’modeltoaddressoperationalconstraints[J].Energy,2014,73(73):387-398.
[50]段瑞钰,李伯聪,汪应洛.工程演化论[M].北京:高等教育出版社,2011.DUANRuiyu,LIBocong,WANGYingluo.Theoryofengineeringevolution[M].Beijing:HigherEducationPress,2011(inChinese).
[51]A-L.BARABASIandR.ALBERT.Emergenceofscalinginrandomnetwork[J].Science,1999,286(5439):509-512.
[52]LIX,JINY,CHENG.ComplexityandsynonizationoftheWorldtradeWeb[J].PhysicaA,2003,328(1-2):287-296.
[53]MEIS,ZHANGX,CAOM.PowerGridComplexity[M].Beijing:TsinghuaUniversityPress,BerlinHeidelberg:Springer,2011.
[54]梅生伟,刘锋,魏韡.工程博弈论基础及电力系统应用[M].北京:科学出版社,2016.MEIShengwei,LIUFeng,WEIWei.Foundationofengineeringgametheoryanditsapplicationstopowersystem[M].Beijing:SciencePress,2016(inChinese).
[55]周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望—试论三代电网[J].中国电机工程学报,2013,33(22):1-11.ZHOUXiaoxin,CHENShuyong,LUZongxiang.Reviewandprospectforpowersystemdevelopmentandrelatedtechnologies:aconceptofthree-generationpowersystems[J].ProceedingsoftheCSEE,2013,33(22):1-11(inChinese).
[56]梅生伟,龚媛,刘锋.三代电网演化模型及特性分析[J].中国电机工程学报,2014,34(7):1003-1012.MEIShengwei,GONGYuan,LIUFeng.Theevolutionmodelofthree-generationpowersystemsandacteristicanalysis[J].ProceedingsoftheCSEE,2014,34(7):1003-1012(inChinese).
[57]VESTERLUNDM,TOFFOLOA,DAHLJ.Optimizationofmulti-sourcecomplexdistrictheatingnetwork,acasestudy[J].Energy,2017,126:53-63.
[58]曾鸣,白学祥,李源非,等.基于复杂适应系统理论的能源互联网演化发展模型、机制及关键技术[J].电网技术,2016,40(11):3383-3390.ZENGMing,BAIXuexiang,LIYuanfei,etal.Developmentmodel,mechanismandkeytechnologyofEnergyInternetbasedoncomplexadaptivesystemtheory[J].PowerSystemTechnology,2016,40(11):3383-3390(inChinese).
[59]蔡巍,赵海,王进法,等.能源互联网宏观结构的统一网络拓扑模型[J].电机工程学报,2015,35(14):3503-3510.CAIWei,ZHAOHai,WANGJinfa,etal.AunifyingnetworktopologicalmodeloftheEnergyInternetmacro-scopestructure[J].ProceedingsoftheChineseSocietyofElectricalEngineering,2015,35(14):3503-3510(inChinese).
[60]田世明,栾文鹏,张东霞,等.能源互联网技术形态与关键技术[J].中国电机工程学报,2015,35(14):3482-3494.TIANShiming,LUANWenpeng,ZHANGDongxia,etal.TechnicalformsandkeytechnologiesonEnergyInternet[J].ProceedingsoftheChineseSocietyofElectricalEngineering,2015,35(14):3482-3494(inChinese).
[61]刘涤尘,彭思成,廖清芬,等.面向能源互联网的未来综合配电系统形态展望[J].电网技术,2015,39(11):3023-3034.LIUDichen,PENGSicheng,LIAOQingfen,etal.OutlookoffutureintegrateddistributionsystemmorphologyorientingtoEnergyInternet[J].PowerSystemTechnology,2015,39(11):3023-3034(inChinese).
[62]HighperformancesimulationplatformusingCloudComputing[EB/OL].[2017-11-11].http://www.cloudpss.net.
[63]LIUX,JENKINSN,WUJ,etal.Combinedanalysisofelectricityandheatnetworks[J].EnergyProcedia,2014,61:155-159.
[64]LUNDH,MünsterE,TAMBJERGLE.Computermodelforenergysystemanalysis,version6.0[R].DivisionofTechnology,EnvironmentandSociety,DepartmentofDevelopmentandPlanning.AalborgUniversity,2004.
[65]WONGP,LARSONR.Optimizationofnatural-gaspipelinesystemsviadynamicprogramming[J].IEEETransactionsonAutomaticControl,1968,13(5):475-481.
[66]WANGY,YOUS,ZHANGH,etal.Hydraulicperformanceoptimizationofmesheddistrictheatingnetworkwithmultipleheatsources[J].Energy,2017,126:603-621.
[67]AJAHAN,PATILAC,HerderPM,etal.Integratedconceptualdesignofarobustandreliablewaste-heatdistrictheatingsystem[J].AppliedThermalEngineering,2007,27(7):1158-1164.
[68]WUL,SHAHIDEHPOURM,LIT.Stochasticsecurityconstrainedunitcommitment[J].IEEETransactionsonPowerSystems,2007,22(2):800-811.
[69]魏韡,刘锋,梅生伟.电力系统鲁棒经济调度(一)理论基础[J].电力系统自动化,2013,37(17):37-43.WEIWei,LIUFeng,MEIShengwei.Robustandeconomicalschedulingmethodologyforpowersystemspartonetheoreticalfoundations[J].AutomationofElectricPowerSystems,2013,37(17):37-43(inChinese).
[70]魏韡,刘锋,梅生伟.电力系统鲁棒经济调度(二)应用实例[J].电力系统自动化,2013,37(18):60-67.WEIWei,LIUFeng,MEIShengwei.Robustandeconomicalschedulingmethodologyforpowersystemsparttwoapplicationexamples[J].AutomationofElectricPowerSystems,2013,37(18):60-67(inChinese).
[71]魏韡.电力系统鲁棒调度模型与应用[D].北京:清华大学,2013.WEIWei.Powersystemrobustdispatchmodelanditsapplications[D].Beijing:TsinghuaUniversity,2013(inChinese).
[72]GABRIELAITIENEI,BøhmB,SUNDENB.Modellingtemperaturedynamicsofadistrictheatingsysteminnaestved,denmark—Acasestudy[J].EnergyConversion&Management,2007,48(1):78-86.
[73]LITTLER.G.Controllingcascadingfailure:Understandingthevulnerabilitiesofintercomnectedinfrastructures[J].JournalofUrbanTechnology,2002,9(1):109-123.
[74]WEIF,JINGZX,WUPZ,etal.AStackelberggameapproachformultipleenergiestradinginintegratedenergysystems[J].AppliedEnergy,2017,200:315-329.
[75]卢强,陈来军,梅生伟.博弈论在电力系统中典型应用及若干展望[J].中国电机工程学报,2014,34(29):5009-5017.LUQiang,CHENLaijun,MEIShengwei.Typicalapplicationsandprospectsofgametheoryinpowersystem[J].ProceedingsoftheChineseSocietyofElectricalEngineering,2014,34(29):5009-5017(inChinese).
[76]梅生伟,魏韡.智能电网环境下主从博弈模型及应用实例[J].系统科学与数学,2014,34(11):1331-1344.MEIShengwei,WEIWei.Hierarchalgameanditsapplicationsinthesmartgrid[J].JournalofSystemsScienceandMathematicalSciences,2014,34(11):1331-1344(inChinese).
[77]MEIShengwei,WEIWei,LIUFeng.Onengineeringgametheorywithitsapplicationinpowersystems[J].ControlTheoryandTechnology,2017,15(1):1-12.
[78]梅生伟,郭文涛,王莹莹,等.一类电力系统鲁棒优化问题的博弈模型及应用实例[J].中国电机工程学报,2013,33(19):47-56.MEIShengwei,GUOWentao,WANGYingying,etal.Agamemodelforrobustoptimizationofpowersystemsanditsapplication[J].ProceedingsoftheCSEE,2013,33(19):47-56(inChinese).
[79]过增元,梁新刚,朱宏晔.—描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296.GUOZengyuan,LIANGXingang,ZHUHongye.Entransy—aphysicalquantitydescribingtheabilityofanobjecttotransferheat[J].ProgressinNaturalScience,2006,16(10):1288-1296(inChinese).
[80]GUOZY,LIUXB,TAOWQ,etal.Effectiveness–thermalresistancemethodforheatexchangerdesignandanalysis[J].InternationalJournalofHeat&MassTransfer,2010,53(13–14):2877-2884.
[81]梅生伟,刘锋,薛安成.电力系统暂态分析中的半张量积方法[M].北京:清华大学出版社,2010.MEIShengwei,LIUFeng,XUEAncheng.Semi-tensorproductapproachforpowersystemtransientanalysis[M].Beijing:TsinghuaUniversityPress,2010(inChinese).
作者简介:梅生伟(1964),男,清华大学教授、博士生导师,长江学者,IEEEFellow,IETFellow,基金委创新群体学术带头人,青海大学启迪新能源学院院长。主要研究方向为电力系统鲁棒控制、大电网灾变防治和可再生能源综合利用等,E-mail:meishengwei@mail.tsinghua.edu.cn。
李瑞(1993),男,博士研究生,主要研究方向为多能互补网络优化控制、压缩空气储能系统建模及强化学习在线控制等,Email:eeairicky@gmail.com。
黄少伟(1985),男,博士,助理研究员,青海大学启迪新能源学院特聘研究员,主要研究方向为电力系统并行和分布式技术、复杂网络理论与大电网安全防御及微电网运行与控制,Email:huangsw@tsinghua.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
7月17日,山东省发改委、工信部、能源局联合印发《山东省零碳园区建设方案》,并在附件提出省级零碳园区14项指标:1、整体目标坚持“高标准、少而精”原则,加强政策、资金、技术支持和要素保障,分期分批,有序推进我省零碳园区建设,逐步达到国家级零碳园区标准要求。到2027年,全省建成15个左右省级
北极星碳管家网获悉,7月17日,山东省发改委、工信部、能源局联合印发《山东省零碳园区建设方案》,方案明确:坚持“高标准、少而精”原则,加强政策、资金、技术支持和要素保障,分期分批,有序推进我省零碳园区建设,逐步达到国家级零碳园区标准要求。到2027年,全省建成15个左右省级零碳园区,形成
当前,能源产业生态正经历从“供给侧资源主导”向“需求侧价值创造”的范式跃迁。现代能源服务业通过构建“用户需求-能效服务-价值共享”的新型商业闭环,催生出涵盖规划咨询、系统集成、智慧运维的全周期解决方案。为把握产业变革机遇,北极星电力网拟于2025年8月7-8日在上海举办2025第七届综合能源服
近日,中国能建中电工程西北院收到中标通知书,确认联合体中标中国能建哈密光热配套风光项目EPC总承包工程。该项目位于新疆哈密市伊吾县淖毛湖区域,项目总装机容量达40万千瓦,包含30万千瓦风电和10万千瓦光伏,配套建设一座220千伏升压站及送出线路。作为国家“疆电外送”战略的重要补充项目,该项目
当前,能源产业生态正经历从“供给侧资源主导”向“需求侧价值创造”的范式跃迁。现代能源服务业通过构建“用户需求-能效服务-价值共享”的新型商业闭环,催生出涵盖规划咨询、系统集成、智慧运维的全周期解决方案。为把握产业变革机遇,北极星电力网拟于2025年8月7-8日在上海举办2025第七届综合能源服
2025年7月16日,伴随着响亮的锣声,中国华电集团有限公司旗下新能源旗舰平台——华电新能源集团股份有限公司(股票简称:华电新能,股票代码:600930)今日正式登陆上海证券交易所主板,标志着这家国内规模最大的新能源发电企业成功驶入资本市场的广阔蓝海,开启了以资本赋能绿色发展的崭新征程。挂牌
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
走进山东能源兖矿智慧制造园区,一栋栋标准化厂房拔地而起,道路两旁的微风发电智慧路灯随风转动,抬眼望去,阳光穿透薄云,洒在成片的深蓝色光伏阵列板上,整个光伏矩阵泛起粼粼波光,从对山林时序的尊重敬畏,升华为对自然节律的精准驾驭。作为山东省重点项目,兖矿智慧制造园区正以绿色低碳发展为引
继Monet、Alice系列之后,亿兰科工商储家族又添新成员——CanOn系列!该系列适配光伏逆变器、储能变流器(PCS)、柴油发电机等多种电源接入,针对多能互补场景,提供储能,光伏,油机,负载,电池,等多种交流母线的汇流,分流,通断,检测,联动等功能,内置双模式控制逻辑(并网/离网),实时检测电
6月25日,在第十三个“全国低碳日”到来之际,生态环境部正式发布2025年度绿色低碳典型案例评选结果。经过组织推荐、专家评审和公示公告等严格程序,全国共有60家单位获此殊荣。其中,鄂尔多斯机场以创新推进“零碳机场”建设的实践成果,成功入选交通基础设施领域典型案例,成为全国交通运输行业绿色
北极星风力发电网获悉,近日,水电四局长治公司成功中标榆林能源武家庄镇10万千瓦风电塔筒采购项目,该项目由中国水电四局(长治)能源装备工程有限公司执行。项目位于陕西省榆林市府谷县武家庄镇,总装机容量100兆瓦,安装16台东方风电6.25兆瓦风力发电机组。长治公司将承制16套分片式塔筒,总工程量
广东灵活调节能力现状及提升路径分析——《新型电力系统下广东灵活调节能力分析及提升举措》摘编王雪辰/整理(中能传媒能源安全新战略研究院)在构建新型电力系统进程中,电力系统的运行特性发生了根本性的变化。新能源大规模接入电网,导致电力系统的灵活调节需求急剧攀升,传统电力系统的灵活调节能
7月16-20日,以“链接世界、共创未来”为主题,由中国贸促会主办的第三届中国国际供应链促进博览会在北京盛大召开。75个国家和地区651家企业和机构参展,集中展示各链条上中下游关键环节的新技术、新产品、新服务,亨通携电力、通信、新材料领域全链路产品矩阵精彩亮相本次展会。在电力领域,亨通此次
7月11日,贵安供电局在新区供电辖区全面启动工业园区、居民小区“一户一表”改造项目,全力打造全国首个“零转供电”示范区。2024年,贵安供电局在全省率先出台《工业园区供电抄表到户升级改造实施方案》,在贵安综合保税区率先推行企业装表到户,实现从“一园一表”到“一企一表”的升级突破,助力园
近日,国网宁波杭湾供电分公司顺利完成最后一条双回路线路的上线工作。至此,宁波前湾新区城区配电线路“全自动FA”实现100%覆盖,标志着配电网故障处置正式迈入“秒级自愈”时代。据悉,全自愈智能电网是指电网系统具备自主诊断、隔离故障并快速恢复供电的能力。通过先进的FA系统,电网可在故障发生时
7月9日,市场监管总局、工业和信息化部发布了关于印发《计量支撑产业新质生产力发展行动方案(2025—2030年)》的通知,其中提到,面向太阳能、风能、核能、氢能、海洋能、生物质能、地热能等领域,围绕关键核心技术装备自主化发展、能源生产储运基础设施建设、储能系统及相关装备研究及产业化等方向计
北极星售电网获悉,7月9日,市场监管总局、工业和信息化部发布了关于印发《计量支撑产业新质生产力发展行动方案(2025—2030年)》的通知(国市监计量发〔2025〕59号),其中提到,面向太阳能、风能、核能、氢能、海洋能、生物质能、地热能等领域,围绕关键核心技术装备自主化发展、能源生产储运基础设
自2024年7月组建以来,国网电力工程研究院有限公司持续深化科技体制机制改革,开展技术攻关,推动产学研用一体发展。牵头获批国家电网有限公司山区基础施工和舞动研究“任务制”项目、抗冰防舞框架项目,锻造重大工程建设和电网安全运行核心技术;在特高压工程建设环保水保管理中全面推广电力遥感技术
7月的浙江热浪袭人,电网负荷曲线持续攀升。7月4日,浙江全省最高用电负荷达12173万千瓦,冲破1.2亿千瓦大关的时间较去年提前了整整15天,杭州、绍兴等地电网负荷更是刷新历史纪录。据浙江省能源局预测,今夏浙江午峰和晚峰最高负荷将分别达到1.33亿千瓦和1.17亿千瓦,同比增长7.8%,电力保供面临“用
7月10日,青岛市人民政府印发《青岛市加快经济社会发展全面绿色转型实施方案》。文件提出,积极稳妥发展非化石能源。积极布局海洋新能源,在青岛西海岸新区、即墨区海域集中开发海上风电,加快深远海海上风电项目和即墨区海上光伏项目建设,谋划储备远海漂浮式光伏项目,力争2030年建成千万千瓦级海上
受持续高温天气影响,7月7日,位于广东横琴粤澳深度合作区的综合能源区域、科学城、粤澳合作中医药科技产业园区的用电负荷出现较大波动。得益于近期投产的全国首个基于混频调制技术的紧凑化经济型多端柔性交流配电互联工程,该区域多回20千伏配电线路自动启用互相调剂负荷功能,在短短30秒内,负荷已控
北极星售电网获悉,7月10日,山东青岛市人民政府发布关于印发《青岛市加快经济社会发展全面绿色转型实施方案》(以下简称《方案》)的通知。《方案》指出,加快构建新型电力系统。统筹本地电网结构优化和互联输电通道建设,推进琅琊、寨里等500千伏骨干电网工程。加快微电网、虚拟电厂、源网荷储一体化
今年3月,国家发展改革委等四部门联合印发《关于公布首批车网互动规模化应用试点的通知》,正式确定上海市、常州市、广州市等9个城市为首批试点城市,同步公布30个试点项目。《能源评论》派出多路记者,前往济南、成都、广州、深圳等地,实地探访车网互动项目,了解规模化试点的进展。在济南,我们来到
北极星储能网获悉,7月14日,大连市工业和信息化局发布对市政协十四届四次会议第0110号提案的答复,提到加强人才培养。大连理工大学2024年新增储能科学与工程本科专业,实施本硕博贯通长周期培养模式。在电化学储能、液流电池、固态电池、压缩空气储能、氢能、储能装备与安全、能源互联网等关键技术及
云南奔腾的江河之水、广西的好“风光”化身为电能,穿越山河,点亮上海外滩的夜色、驱动浙江轰鸣的生产线、保障安徽实验室的精密仪器用电;广东富余的电能送入福建,变为寻常人家的空调凉风。这场千里奔赴,源于一场电力“全国购”。近日,我国规模最大跨经营区市场化电力交易落地。在北京电力交易中心
“微信扫码充值即可用电,费用按实际用电量结算,剩余的钱当即退回,真是太便捷了!”7月13日晚,在位于唐山市滦州市茨榆坨镇的夜市街边,通过采用冀北唐山供电公司推广的“码上”用电模式,摆摊商户李木敏在供电员工田鹏程指导下,利用手机软件“网上国网”APP扫描身边共享电源上的二维码,便捷地用上
近日,我国规模最大跨经营区市场化电力交易落地。7月1日至9月15日,超20亿千瓦时来自广东、广西、云南的电能,将通过闽粤联网工程全天候送至上海、浙江、安徽、福建,国家电网、南方电网跨经营区电力交易进入常态开展新阶段。这是全国统一电力市场初步建成的重要标志之一。此次交易由北京电力交易中心
当前,我国新能源发电领域发展势头迅猛,正加速重塑能源格局。2025年上半年,全国新增并网风电和太阳能发电装机容量1.28亿千瓦,占新增总装机容量的84%,清洁能源正逐步向“主力电源”跃迁。在电力市场化改革持续深化、新型能源体系加快构建的宏伟蓝图下,“源网荷储一体化”正从示范性项目迈向规模化
2025年6月20日-21日,以“人工智能深化协同,能源科技求索创新”为主题的2025国家能源互联网大会在杭州国际博览中心成功举办。在人工智能分论坛上,国网杭州供电公司科技数字化部副主任韩荣杰作《基于国网光明电力大模型的杭电“光擎”智能应用》的报告。经专家同意,在此分享报告PPT,欢迎品读。来源
文/本刊记者张越月特约撰稿陈昊南林熙熙黄子琪从出行到餐饮,从住房到医疗,过去几年中,各类共享平台如雨后春笋般涌现,渗透至生活的诸多领域,提高了资源使用的效率,也创造出了巨大的商业价值。车网互动也可被视作一种特殊的共享平台,它通过整合电动汽车和电网资源,实现了能源的双向流动和优化配
7月8日,天合光能发布关于变更公司副总经理的公告,公告显示,天合光能副总经理丁华章先生因工作调动原因不再担任公司副总经理一职,调整后丁华章先生继续在公司子公司天合富家担任董事的同时,还拟进一步担任天合富家的副总经理,并将聚焦于天合富家的运营管理工作。同时,公司聘任财务负责人吴森先生
北极星储能网讯:7月7日,山西长治市人民政府印发智慧能碳源网荷储一体化实施方案,在7月底前实现区域内主要用能企业,以及风、光、储、充等对象的数据采集设备安装并接入市级平台。2025年7月底前,全市用能企业、市内风电、光伏、储能、充换电站应接尽接,建立相对完善的智慧能碳大数据体系。打造全国
近来备受关注的虚拟电厂究竟有何“实”力?(来源:中国能源观察作者:曲艺)看向需求侧。2024年7月,国家发展改革委、国家能源局、国家数据局发布《加快构建新型电力系统行动方案(2024#x2014;2027年)》提出,以“小切口”解决“大问题”,提升电网对清洁能源的接纳、配置、调控能力。在2024#x2014;2
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!