登录注册
请使用微信扫一扫
关注公众号完成登录
图8多能互补网络演化博弈模型
Fig.8Evolutionarygamemodelofmulti-carrierenergysystem
3.3多能互补网络演化的均衡求解与分析
由于多种能源的生产者、消费者、传输者等多主体之间存在竞争、合作等复杂博弈行为,多能互补网络生长演化的动力学模型,即复制者动态方程难以通过普通函数描述,呈现高度非线性,难以求解演化博弈全部均衡解。为此,可采用KKT最优性条件刻画参与者对其他参与者策略的理性反应,将复制者动态方程归结为一类微分互补系统。
对于演化稳定均衡策略,首先采用同伦法在给定范围内寻找该微分互补系统的平衡点,并根据平衡点处雅克比矩阵特征值筛选出稳定平衡点,即演化稳定均衡。其次,通过非线性系统半张量积稳定理论[81]计算每个演化稳定均衡的吸引域,给出系统能够维持结构稳定(即各类能源比例不发生大幅度变化)的扰动范围,精练演化稳定均衡。最后,获得减小物理经济总成本且保证系统安全的多能互补网络演化形态及多能源主体策略形态,供运行规划及调度等部门决策使用。对于非稳定均衡策略,即不稳定平衡点,需分析其失稳原因,给出防范措施,或设计合适的激励机制消除非稳定均衡策略。多能互补网络演化均衡求解与分析思路如图9所示。
图9多能互补网络演化均衡求解与分析思路
Fig.9Evolutionaryequilibriumofmulti-carrierenergysystem
4多能互补网络仿真模拟技术
多能互补网络仿真模拟平台是其建模分析与演化机理研究的必要工具。针对多能互补网络,开发一体化仿真模拟平台的重要性不言而喻。正如前文所述,多能互补网络动态特性复杂,既有纳秒到毫秒级的电网动态,又有分钟级甚至小时级的燃气、热力管网动态;既要考虑单一能源环节内部的动态,也要计及不同能源形式的耦合特性和综合优化;既要考虑人为主观决策因素,也要考虑大量不确定性因素的影响。特别是多能互补网络一体化网络模型及演化博弈模型分别是在固定时间断面和边界条件、长时间过程和变边界条件两种场景下对多能互补网络的模拟,但两者物理上密不可分。
影响多能互补网络运行和生长演化的因素众多,典型者如新能源、主动负荷、市场机制、市场参与者等均伴随着强不确定性,造成多能互补网络一体化网络模型和演化博弈模型具有高维不确定性特征,需要通过大量场景的仿真才能准确刻画其特性。海量场景的仿真导致计算量剧增,传统仿真计算平台难以在有限时间内完成全部仿真。因此,为实现多能互补网络全方位综合仿真模拟,需要突破大规模系统多时空尺度分解协调仿真和海量场景分布式并行仿真等技术难题。
在多能互补网络仿真模拟技术研究方面,首先,基于多Agent构建多能互补系统仿真模拟平台;其次,采用试验系统进行模型校正和平台验证;最后,基于其解决多能互补典型工程问题,包括多能互补网络规划设计、市场运营机制、连锁故障模拟及安全防御等。
4.1多能互补网络仿真模拟平台
在多能互补网络仿真模拟平台研发方面,首先在多能互补网络建模和演化机理基础上,根据多能互补网络的物理信息结构、市场模型和演化机制,设计数据交互接口和通信协议;在一体化模型的基础上编制大规模多能互补网络暂态仿真、稳态潮流分析、市场交易模拟模块;在多能互补动态演化机理的基础上编制5~30年中长期演化过程模拟模块;研发基于多Agent的多能互补网络仿真模拟平台,实现能量流动、信息传递和经济行为的模拟。其次,根据新能源的功率波动特性以及市场个体行为等不确定性设计大量仿真场景,采用场景削减技术压缩仿真模拟的场景数,进而利用并行计算技术对多能互补网络多场景仿真进行加速计算。在此基础上,综合考虑系统综合能效、新能源消纳比例、环境效益等方面因素建立系统状态评估体系,采用深度学习等方法训练系统评价指标,选取系统关键特征量。通过对不同边界条件、演化机制下系统的性能指标进行数据挖掘,形成知识并指导仿真场景的削减,以加速演化模拟过程。
4.2仿真模拟平台测试及工程应用
仿真模拟平台正确性验证是用其指导多能互补网络工程实践的前提,实际多能互补系统运行经验也可为仿真模型校正提供依据。在多能互补网络仿真模拟平台测试方面,首先采用成熟商用仿真软件对仿真平台的物理系统模型进行校准。然后,在仿真模拟平台中建立实际系统模型,对比仿真结果与实测数据,验证仿真平台的正确性。在此基础上,优化和调整仿真平台。
在多能互补网络仿真模拟平台工程应用方面,基于所研发的仿真模拟平台,研究多能互补网络的连锁故障模拟与安全防御技术、规划设计以及运营机制。具体研究内容包括:1)多能互补网络设备多样性、随机性强,故障可能在多个耦合系统交织传播,需要研究连锁故障演变机理和传播路径,进而设计快速安全防御策略;2)基于仿真模拟平台研究多能互补网络的中长期演化过程,提出系统规划设计方法,应用于实际多能互补网络;3)研究多边能源市场的分析与设计问题,探讨适合中国国情的能源交易体系,构建公平、自主、开放的能源市场,促进多能源互补利用与能源效率的提升。
5结语
多能互补网络已成为未来能源系统演化发展的必然趋势,而全球能源互联网将是多能互补网络演化发展的一种形态。本文适逢中国能源革命与电力体制改革的关键期,立足于能源产业发展面临的瓶颈,通过新理论、新方法攻克难题,以推动能源互联网的建设和普及。针对能源互联网的基础设施,即多能互补网络,分析了其运行所关心的建模分析及演化机理基本理论与技术瓶颈问题,详细分析了多能互补网络建模、动态演化机理及仿真三方面关键技术。本文有望为多能互补网络建模分析、规划设计及演化发展等相关研究提供参考。
参考文献
[1]LUNDH,WERNERS,WILTSHIRER,etal.4thgenerationdistrictheating:Integratingsmartthermalgridsintofuturesustainableenergysystems[J].Energy,2014,68:1-11.
[2]LIY,REZGUIY,ZHUH.Districtheatingandcoolingoptimizationandenhancement–Towardsintegrationofrenewables,storageandsmartgrid[J].Renewable&SustainableEnergyReviews,2017,72:281-294.
[3]SCHOTJ,KANGERL,VERBONGG.Therolesofusersinshapingtransitionstonewenergysystems[J].NatureEnergy,2016,1(5):1-7.
[4]里夫金˙杰米.第三次工业革命:新经济模式如何改变世界[M].张体伟,孙豫宁译.北京:中信出版社,2012:46-56.JEREMYRIFKIN.Thethirdindustrialrevolution:howlateralpoweristransformingenergy,theeconomy,andtheworld[M].ZHANGTiwei,SUNYuning(translate).Beijing:CITICPublishingHouse,2012:46-56(inChinese).
[5]WUFF,VARAIYAPP,HUIRSY.Smartgridswithintelligentperiphery:anarchitecturefortheEnergyInternet[J].Engineering,2015,1(4):436-446.
[6]HUANGAQ,CROWML,HEYDTGT,etal.Thefuturerenewableelectricenergydeliveryandmanagement(FREEDM)system:theEnergyInternet[J].ProceedingsoftheIEEE,2010,99(1):133-148.
[7]孙宏斌,郭庆来,潘昭光.能源互联网:理念、架构与前沿展望[J].电力系统自动化,2015,39(19):1-7.SUNHongbin,GUOQinglai,PANZhaoguang.Energyinternet:concepts,architectureandfrontieroutlook[J].AutomationofElectricPowerSystems,2015,39(19):1-7(inChinese).
[8]孙宏斌,郭庆来,潘昭光,等.能源互联网:驱动力、评述与展望[J].电网技术,2015,39(11):3005-3013.SUNHongbin,GUOQinglai,PANZhaoguang,etal.Energyinternet:drivingforce,reviewandoutlook[J].PowerSystemTechnology,2015,39(11):3005-3013(inChinese).
[9]贾宏杰,王丹,徐宪东,等.区域综合能源系统若干问题研究[J].电力系统自动化,2015,39(7):198-207.JIAHongjie,WANGDan,XUXiandong,etal.Researchonsomekeyproblemsrelatedtointegratedenergysystems[J].AutomationofElectricPowerSystems,2015,39(7):198-207(inChinese).
[10]曾鸣,刘道新,李娜,等.综合能源系统的关键经济问题研究[J].华东电力,2013,41(7):1403-1408.ZENGMing,LIUDaoxin,LINa,etal.Keyeconomicissuesinintegratedenergysystem[J].EastChinaElectricPower,2013,41(7):1403-1408(inChinese).
[11]余晓丹,徐宪东,陈硕翼,等.综合能源系统与能源互联网简述[J].电工技术学报,2016,31(1):1-13.YUXiaodan,XUXiandong,CHENShuoyi,etal.AbriefreviewtointegratedenergysystemandEnergyInternet[J].TransactionsofChinaElectrotechnicalSociety,2016,31(1):1-13(inChinese).
[12]马钊,周孝信,尚宇炜,等.能源互联网概念、关键技术及发展模式探索[J].电网技术,2015,39(11):3014-3022.MAZhao,ZHOUXiaoxin,SHANGYuwei,etal.Exploringtheconcept,keytechnologiesanddevelopmentmodelofEnergyInternet[J].PowerSystemTechnology,2015,39(11):3014-3022(inChinese).
[13]周孝信.构建新一代能源系统的设想[J].陕西电力,2015,43(9):1-4.ZHOUXiaoxin.Atentativeideaofbuildingnewgenerationofenergysystem[J].ShaanxiElectricPower,2015,43(9):1-4(inChinese).
[14]周孝信,曾嵘,高峰,等.能源互联网的发展现状与展望[J].中国科学:信息科学,2017,47(2):149-170.ZHOUXiaoxin,ZENGRong,GAOFeng,etal.Developmentstatusandprospectsoftheenergyinternet[J].SciencesinicaInformationis,2017,47(2):149-170(inChinese).
[15]HEMMESK,ZACHARIAH-WOLFJL,GEIDLM,etal.Towardsmulti-sourcemulti-productenergysystems[J].InternationalJournalofHydrogenEnergy,2007,32(10):1332-1338.
[16]KOEPPELG,ANDERSSONG.Reliabilitymodelingofmulticarrierenergysystems[J].Energy,2009,34(3):235-244.
[17]TheEconomists.AmassiveblackoutpromptsquestionsaboutTaiwan’senergypolicy[EB/OL].[2017-11-11].https://www.economist.com/news/asia/21726758-can-it-really-phase-outnuclear-power-massive-blackout-prompts-questions-abouttaiwans-energy.
[18]DepartmentofEnergy.Staffreporttothesecretaryonelectricitymarketsandreliability[EB/OL].[2017-11-11].https://energy.gov/downloads/download-staff-report-secretaryelectricity-markets-and-reliability.
[19]HANSENK,CONNOLLYD,LUNDH,etal.HeatroadmapEurope:identifyingthebalancebetweensavingheatandsupplyingheat[J].Energy,2016,115:1663-1671.
[20]XIONGW,WANGY,MATHIESENBV,etal.HeatroadmapChina:newheatstrategytoreduceenergyconsumptiontowards2030[J].Energy,2015,81:274-285.
[21]JIEP,TIANZ,YUANS,etal.Modelingthedynamicacteristicsofadistrictheatingnetwork[J].Energy,2012,39(1):126-134.
[22]程林,张靖,黄仁乐,等.基于多能互补的综合能源系统多场景规划案例分析[J].电力自动化设备,2017,37(6):282-287.CHENGLin,ZHANGJing,HUANGRenle,etal.Caseanalysisofmulti-scenarioplanningbasedonmulti-energycomplementationforintegratedenergysystem[J].ElectricPowerAutomationEquipment,2017,37(6):282-287(inChinese).
[23]MEIShengwei,LIRui,XUEXiaodai,etal.Pavingthewaytosmartmicroenergygrid:concepts,designprinciples,andengineeringpractices[J].CSEEJournalofPowerandEnergySystems,2017,3(4):440-449.
[24]梅生伟,李瑞.智慧微能源网及工程实践[J].中国人工智能学会通讯.2016,6(10):1-5.MEIShengwei,LIRui.Smartmicroenergygridanditsengineeringimplementation[J].ChineseAssociationforArtificialIntelligenceCommunication,2016,6(10):1-5(inChinese).
[25]GAHLEITNERG.Hydrogenfromrenewableelectricity:Aninternationalreviewofpower-to-gaspilotplantsforstationaryapplications[J].InternationalJournalofHydrogenEnergy,2013,38(5):2039-2061.
[26]王业磊,赵俊华,文福拴,等.具有电转气功能的多能源系统的市场均衡分析[J].电力系统自动化,2015,39(21):1-10.WANGYelei,ZHAOJunhua,WENFushuan,etal.Marketequilibriumofmulti-energysystemwithpower-to-gasfunctions[J].AutomationofElectricPowerSystems,2015,39(21):1-10(inChinese).
[27]ANS.Naturalgasandelectricityoptimalpowerflow[D].Stillwater:OklahomaStateUniversity,2004.
[28]SHAHIDEHPOURM,FUY,WIEDMANT.Impactofnaturalgasinfrastructureonelectricpowersystems[J].ProceedingsoftheIEEE,2005,93(5):1042-1056.
[29]CORREA-POSADACM,Sánchez-MartınP.Securityconstrainedoptimalpowerandnatural-gasflow[J].IEEETransactionsonPowerSystems,2014,29(4):1780-1787.
[30]BADAKHSHANS,KAZEMIM,EHSANM.Securityconstrainedunitcommitmentwithflexibilityinnaturalgastransmissiondelivery[J].JournalofNaturalGasScienceandEngineering,2015,27:632-640.
[31]ZHANGX,SHAHIDEHPOURM,ALABDULWAHABA,etal.Hourlyelectricitydemandresponseinthestochasticday-aheadschedulingofcoordinatedelectricityandnaturalgasnetworks[J].IEEETransactionsonPowerSystems,2016,31(1):592-601.
[32]WANGC,WEIW,WANGJ,etal.Robustdefensestrategyforgas–electricsystemsagainstmaliciousattacks[J].IEEETransactionsonPowerSystems,2017,32(4):2953-2965.
[33]ZHOUY,GUC,WUH,etal.Anequivalentmodelofgasnetworksfordynamicanalysisofgas-electricitysystems[J].IEEETransactionsonPowerSystems,2017,32(6):4255-4264.
[34]LUNDH.Large-scaleintegrationofwindpowerintodifferentenergysystems[J].Energy,2005,30(13):2402-2412.
[35]MEIBOMP,KIVILUOMAJ,BARTHR,etal.Valueofelectricheatboilersandheatpumpsforwindpowerintegration[J].WindEnergy,2007,10(4):321-337.
[36]王成山,洪博文,郭力,等.冷热电联供微网优化调度通用建模方法[J].中国电机工程学报,2013,33(31):26-33.WANGChengshan,HONGBowen,GUOLi,etal.Ageneralmodelingmethodforoptimaldispatchofcombinedcooling,heatingandpowermicrogrid[J].ProceedingsoftheCSEE,2013,33(31):26-33(inChinese).
[37]LIRui,CHENLaijun,YUANTiejiang,etal.Optimaldispatchofzero-carbonemissionmicroEnergyInternetintegratedwithnon-supplementaryfiredcompressedairenergystoragesystem[J].JournalofModernPowerSystemandCleanEnergy,2016,4(4):566–580.
[38]LIRui,CHENLaijun,ZHAOBo,etal.Economicdispatchofintegratedheat-powerenergydistributionsystemwithconcentratingsolarpowerenergyhub[J].JournalofEnergyEngineering,2017,143(5):1-11.
[39]JIANGX,JINGZ,LIY,etal.Modellingandoperationoptimizationofanintegratedenergybaseddirectdistrictwaterheatingsystem[J].Energy,2014,64:375-388.
[40]LUOX,GUANX,LIM,etal.Dynamicbehaviourofonedimensionalflowmultistreamheatexchangersandtheirnetworks[J].InternationalJournalofHeat&MassTransfer,2003,46(4):705-715.
[41]LIZ,WUW,SHAHIDEHPOURM,etal.Combinedheatandpowerdispatchconsideringpipelineenergystorageofdistrictheatingnetwork[J].IEEETransactionsonSustainableEnergy,2015,7(1):12-22.
[42]LINC,WUW,ZHANGB,etal.Decentralizedsolutionforcombinedheatandpowerdispatchthroughbendersdecomposition[J].IEEETransactionsonSustainableEnergy,2017,8(4):1361-1371.
[43]GEIDLM,KOEPPELG,Favre-PerrodP,etal.Energyhubsforthefuture[J].IEEEPowerandEnergyMagazine,2007,5(1):24-30.
[44]GEIDLM,ANDERSSONG.Optimalpowerflowofmultipleenergycarriers[J].IEEETransactionsonPowerSystems,2007,22(1):145-155.
[45]ZHANGX,SHAHIDEHPOURM,ALABDULWAHABA,etal.Optimalexpansionplanningofenergyhubwithmultipleenergyinfrastructures[J].IEEETransactionsonSmartGrid,2015,6(5):2302-2311.
[46]BOZCHALUIMC,HASHMISA,HASSENH,etal.Optimaloperationofresidentialenergyhubsinsmartgrids[J].IEEETransactionsonSmartGrid,2012,3(4):1755-1766.
[47]MANSHADISD,KHODAYARME.Resilientoperationofmultipleenergycarriermicrogrids[J].IEEETransactionsonSmartGrid,2015,6(5):2283-2292.
[48]PAZOUKIS,HAGHIFAMMR,MOSERA.Uncertaintymodelinginoptimaloperationofenergyhubinpresenceofwind,storageanddemandresponse[J].InternationalJournalofElectricalPowerandEnergySystems,2014,61:335-345.
[49]EVINSR,OREHOUNIGK,DORERV,etal.Newformulationsofthe‘energyhub’modeltoaddressoperationalconstraints[J].Energy,2014,73(73):387-398.
[50]段瑞钰,李伯聪,汪应洛.工程演化论[M].北京:高等教育出版社,2011.DUANRuiyu,LIBocong,WANGYingluo.Theoryofengineeringevolution[M].Beijing:HigherEducationPress,2011(inChinese).
[51]A-L.BARABASIandR.ALBERT.Emergenceofscalinginrandomnetwork[J].Science,1999,286(5439):509-512.
[52]LIX,JINY,CHENG.ComplexityandsynonizationoftheWorldtradeWeb[J].PhysicaA,2003,328(1-2):287-296.
[53]MEIS,ZHANGX,CAOM.PowerGridComplexity[M].Beijing:TsinghuaUniversityPress,BerlinHeidelberg:Springer,2011.
[54]梅生伟,刘锋,魏韡.工程博弈论基础及电力系统应用[M].北京:科学出版社,2016.MEIShengwei,LIUFeng,WEIWei.Foundationofengineeringgametheoryanditsapplicationstopowersystem[M].Beijing:SciencePress,2016(inChinese).
[55]周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望—试论三代电网[J].中国电机工程学报,2013,33(22):1-11.ZHOUXiaoxin,CHENShuyong,LUZongxiang.Reviewandprospectforpowersystemdevelopmentandrelatedtechnologies:aconceptofthree-generationpowersystems[J].ProceedingsoftheCSEE,2013,33(22):1-11(inChinese).
[56]梅生伟,龚媛,刘锋.三代电网演化模型及特性分析[J].中国电机工程学报,2014,34(7):1003-1012.MEIShengwei,GONGYuan,LIUFeng.Theevolutionmodelofthree-generationpowersystemsandacteristicanalysis[J].ProceedingsoftheCSEE,2014,34(7):1003-1012(inChinese).
[57]VESTERLUNDM,TOFFOLOA,DAHLJ.Optimizationofmulti-sourcecomplexdistrictheatingnetwork,acasestudy[J].Energy,2017,126:53-63.
[58]曾鸣,白学祥,李源非,等.基于复杂适应系统理论的能源互联网演化发展模型、机制及关键技术[J].电网技术,2016,40(11):3383-3390.ZENGMing,BAIXuexiang,LIYuanfei,etal.Developmentmodel,mechanismandkeytechnologyofEnergyInternetbasedoncomplexadaptivesystemtheory[J].PowerSystemTechnology,2016,40(11):3383-3390(inChinese).
[59]蔡巍,赵海,王进法,等.能源互联网宏观结构的统一网络拓扑模型[J].电机工程学报,2015,35(14):3503-3510.CAIWei,ZHAOHai,WANGJinfa,etal.AunifyingnetworktopologicalmodeloftheEnergyInternetmacro-scopestructure[J].ProceedingsoftheChineseSocietyofElectricalEngineering,2015,35(14):3503-3510(inChinese).
[60]田世明,栾文鹏,张东霞,等.能源互联网技术形态与关键技术[J].中国电机工程学报,2015,35(14):3482-3494.TIANShiming,LUANWenpeng,ZHANGDongxia,etal.TechnicalformsandkeytechnologiesonEnergyInternet[J].ProceedingsoftheChineseSocietyofElectricalEngineering,2015,35(14):3482-3494(inChinese).
[61]刘涤尘,彭思成,廖清芬,等.面向能源互联网的未来综合配电系统形态展望[J].电网技术,2015,39(11):3023-3034.LIUDichen,PENGSicheng,LIAOQingfen,etal.OutlookoffutureintegrateddistributionsystemmorphologyorientingtoEnergyInternet[J].PowerSystemTechnology,2015,39(11):3023-3034(inChinese).
[62]HighperformancesimulationplatformusingCloudComputing[EB/OL].[2017-11-11].http://www.cloudpss.net.
[63]LIUX,JENKINSN,WUJ,etal.Combinedanalysisofelectricityandheatnetworks[J].EnergyProcedia,2014,61:155-159.
[64]LUNDH,MünsterE,TAMBJERGLE.Computermodelforenergysystemanalysis,version6.0[R].DivisionofTechnology,EnvironmentandSociety,DepartmentofDevelopmentandPlanning.AalborgUniversity,2004.
[65]WONGP,LARSONR.Optimizationofnatural-gaspipelinesystemsviadynamicprogramming[J].IEEETransactionsonAutomaticControl,1968,13(5):475-481.
[66]WANGY,YOUS,ZHANGH,etal.Hydraulicperformanceoptimizationofmesheddistrictheatingnetworkwithmultipleheatsources[J].Energy,2017,126:603-621.
[67]AJAHAN,PATILAC,HerderPM,etal.Integratedconceptualdesignofarobustandreliablewaste-heatdistrictheatingsystem[J].AppliedThermalEngineering,2007,27(7):1158-1164.
[68]WUL,SHAHIDEHPOURM,LIT.Stochasticsecurityconstrainedunitcommitment[J].IEEETransactionsonPowerSystems,2007,22(2):800-811.
[69]魏韡,刘锋,梅生伟.电力系统鲁棒经济调度(一)理论基础[J].电力系统自动化,2013,37(17):37-43.WEIWei,LIUFeng,MEIShengwei.Robustandeconomicalschedulingmethodologyforpowersystemspartonetheoreticalfoundations[J].AutomationofElectricPowerSystems,2013,37(17):37-43(inChinese).
[70]魏韡,刘锋,梅生伟.电力系统鲁棒经济调度(二)应用实例[J].电力系统自动化,2013,37(18):60-67.WEIWei,LIUFeng,MEIShengwei.Robustandeconomicalschedulingmethodologyforpowersystemsparttwoapplicationexamples[J].AutomationofElectricPowerSystems,2013,37(18):60-67(inChinese).
[71]魏韡.电力系统鲁棒调度模型与应用[D].北京:清华大学,2013.WEIWei.Powersystemrobustdispatchmodelanditsapplications[D].Beijing:TsinghuaUniversity,2013(inChinese).
[72]GABRIELAITIENEI,BøhmB,SUNDENB.Modellingtemperaturedynamicsofadistrictheatingsysteminnaestved,denmark—Acasestudy[J].EnergyConversion&Management,2007,48(1):78-86.
[73]LITTLER.G.Controllingcascadingfailure:Understandingthevulnerabilitiesofintercomnectedinfrastructures[J].JournalofUrbanTechnology,2002,9(1):109-123.
[74]WEIF,JINGZX,WUPZ,etal.AStackelberggameapproachformultipleenergiestradinginintegratedenergysystems[J].AppliedEnergy,2017,200:315-329.
[75]卢强,陈来军,梅生伟.博弈论在电力系统中典型应用及若干展望[J].中国电机工程学报,2014,34(29):5009-5017.LUQiang,CHENLaijun,MEIShengwei.Typicalapplicationsandprospectsofgametheoryinpowersystem[J].ProceedingsoftheChineseSocietyofElectricalEngineering,2014,34(29):5009-5017(inChinese).
[76]梅生伟,魏韡.智能电网环境下主从博弈模型及应用实例[J].系统科学与数学,2014,34(11):1331-1344.MEIShengwei,WEIWei.Hierarchalgameanditsapplicationsinthesmartgrid[J].JournalofSystemsScienceandMathematicalSciences,2014,34(11):1331-1344(inChinese).
[77]MEIShengwei,WEIWei,LIUFeng.Onengineeringgametheorywithitsapplicationinpowersystems[J].ControlTheoryandTechnology,2017,15(1):1-12.
[78]梅生伟,郭文涛,王莹莹,等.一类电力系统鲁棒优化问题的博弈模型及应用实例[J].中国电机工程学报,2013,33(19):47-56.MEIShengwei,GUOWentao,WANGYingying,etal.Agamemodelforrobustoptimizationofpowersystemsanditsapplication[J].ProceedingsoftheCSEE,2013,33(19):47-56(inChinese).
[79]过增元,梁新刚,朱宏晔.—描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296.GUOZengyuan,LIANGXingang,ZHUHongye.Entransy—aphysicalquantitydescribingtheabilityofanobjecttotransferheat[J].ProgressinNaturalScience,2006,16(10):1288-1296(inChinese).
[80]GUOZY,LIUXB,TAOWQ,etal.Effectiveness–thermalresistancemethodforheatexchangerdesignandanalysis[J].InternationalJournalofHeat&MassTransfer,2010,53(13–14):2877-2884.
[81]梅生伟,刘锋,薛安成.电力系统暂态分析中的半张量积方法[M].北京:清华大学出版社,2010.MEIShengwei,LIUFeng,XUEAncheng.Semi-tensorproductapproachforpowersystemtransientanalysis[M].Beijing:TsinghuaUniversityPress,2010(inChinese).
作者简介:梅生伟(1964),男,清华大学教授、博士生导师,长江学者,IEEEFellow,IETFellow,基金委创新群体学术带头人,青海大学启迪新能源学院院长。主要研究方向为电力系统鲁棒控制、大电网灾变防治和可再生能源综合利用等,E-mail:meishengwei@mail.tsinghua.edu.cn。
李瑞(1993),男,博士研究生,主要研究方向为多能互补网络优化控制、压缩空气储能系统建模及强化学习在线控制等,Email:eeairicky@gmail.com。
黄少伟(1985),男,博士,助理研究员,青海大学启迪新能源学院特聘研究员,主要研究方向为电力系统并行和分布式技术、复杂网络理论与大电网安全防御及微电网运行与控制,Email:huangsw@tsinghua.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星电力网整理了2025年6月3日至2025年6月6日一周火电项目,涉及项目的核准、开工、投运等。宁夏电投石嘴山2×660MW超超临界热电项目初步设计通过审查5月29日至30日,宁夏电投石嘴山2×660MW超超临界热电项目召开外部评审会,初步设计文件顺利通过审查。详情点击榆神榆横2×350MW热电联产工程1号机组
北极星电力网整理了2025年6月3日至2025年6月6日一周电力项目:涉及火电、水电、核电项目的核准、开工、并网等。火电项目宁夏电投石嘴山2×660MW超超临界热电项目初步设计通过审查5月29日至30日,宁夏电投石嘴山2×660MW超超临界热电项目召开外部评审会,初步设计文件顺利通过审查。详情点击榆神榆横2×
6月5日,宁夏银川市人民政府办公室关于印发《银川高新区高质量发展实施方案(2025—2027年)》的通知。文件指出,积极招引动力电池、风机叶片、光伏组件等“新三样”及算力服务器等拆解回收利用项目,鼓励发展“互联网+回收”模式,强化全链条数字化监管,推进循环经济产业与合规化、标准化服务体系深
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
目前,华能集团共5家上市公司,分别是:华能国际、内蒙华电、华能水电、新能泰山、长城证券。一、华能国际华能国际是中国最大的上市发电公司之一,截至2024年底,华能国际发电装机超1.45亿千瓦,其中风电装机1810.9万千瓦、太阳能装机1983.6万千瓦、水电装机37万千瓦、天然气发电装机1350.8万千瓦、生
6月5日,银川市人民政府关于印发《苏银产业园高质量发展实施方案(2025-2027年)》的通知,通知指出,聚焦硅基、碳基材料,高性能纤维材料等领域,依托20GW异质结单晶材料智慧工厂等项目,加速布局新一代异质结专用切片、电池、组件、钙钛矿等光伏材料产业。原文如下:银川市人民政府办公室关于印发《苏
6月5日,汉中市发改委发布汉中市电力高质量发展实施意见(草稿),文件指出,鼓励屋顶分布式项目开发,推动工商业屋顶分布式光伏发展,支持优先采用“自发自用”建设模式,鼓励分布式光伏项目配置储能设施,减小公共电网运行压力。住房城乡建设、发展改革、自然资源、财政、机关事务管理等部门,应当共
6月5日,国新办举行新闻发布会,介绍“深化提升‘获得电力’服务水平全面打造现代化用电营商环境”有关情况。有记者提问“当前供电服务还存在一些薄弱的区域和环节,比如农村偏远地区、孤岛等供电末梢,这些都是供电服务的堵点难点所在。请问,电网企业将采取哪些措施解决这类问题?”,中国南方电网有
6月5日,国新办举行新闻发布会,介绍“深化提升‘获得电力’服务水平全面打造现代化用电营商环境”有关情况。国家能源局副局长宋宏坤在回答记者提问时表示,近年来,中国可再生能源总体保持了高速度发展、高比例利用、高质量消纳的良好态势,为保障电力供应、促进能源转型发挥了重要作用。截至今年4月
北极星售电网获悉,6月5日,宁夏银川市人民政府办公室关于印发《苏银产业园高质量发展实施方案(2025-2027年)》(以下简称《方案》)的通知。《方案》指出,以新能源开发利用为牵引,以绿电园区建设为支撑,积极推进源网荷储、分布式微能网、虚拟电厂等新型电力系统建设,构建绿电直供、绿色算力、绿色
6月5日,国务院新闻办举行新闻发布会,介绍《关于深化提升“获得电力”服务水平全面打造现代化用电营商环境的意见》有关情况并答记者问,国家能源局副局长宋宏坤、国家电网有限公司总经理庞骁刚、中国南方电网有限责任公司总经理钱朝阳、国家能源局市场监管司司长郝瑞锋等出席会议。文字实录如下:国家
北极星售电网获悉,6月6日,河北省发展和改革委员会发布关于促进能源领域民营经济发展若干细化举措的通知。文件提出,支持民营企业积极投资智能微电网。深化分布式智能电网规划建设、运行控制、运营模式等与大电网责权划分的研究探索,支持民营企业投资建设分布式智能电网,与电网企业创新形成合作共赢
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
6月5日,银川市人民政府关于印发《苏银产业园高质量发展实施方案(2025-2027年)》的通知,通知指出,聚焦硅基、碳基材料,高性能纤维材料等领域,依托20GW异质结单晶材料智慧工厂等项目,加速布局新一代异质结专用切片、电池、组件、钙钛矿等光伏材料产业。原文如下:银川市人民政府办公室关于印发《苏
随着近期云南多个新型储能电站密集投产,云南省新型储能装机于5月31日突破400万千瓦,达到465.5万千瓦,超额实现“十四五”规划目标。其中,集中共享储能达435.5万千瓦、占新型储能总装机比例达93.5%,且主要以锂电池技术为主。近年来,随着“双碳”目标与“两型”建设加速推进,云南省聚焦“三个定位
6月5日,汉中市发改委发布汉中市电力高质量发展实施意见(草稿),文件指出,鼓励屋顶分布式项目开发,推动工商业屋顶分布式光伏发展,支持优先采用“自发自用”建设模式,鼓励分布式光伏项目配置储能设施,减小公共电网运行压力。住房城乡建设、发展改革、自然资源、财政、机关事务管理等部门,应当共
北极星售电网获悉,6月5日,宁夏银川市人民政府办公室关于印发《苏银产业园高质量发展实施方案(2025-2027年)》(以下简称《方案》)的通知。《方案》指出,以新能源开发利用为牵引,以绿电园区建设为支撑,积极推进源网荷储、分布式微能网、虚拟电厂等新型电力系统建设,构建绿电直供、绿色算力、绿色
北极星售电网获悉,近日,陕西省汉中市发展和改革委员会发布《汉中市电力高质量发展实施意见(草稿)》,其中提到,县级以上人民政府及其有关部门应当因地制宜推动储蓄、火电、水电等多种电源与新能源发电协同运营,有序发展多能互补项目;健全多能源发电协同调度机制,统筹优化调峰电源运行,保障新能
6月4日,国家能源局印发关于组织开展新型电力系统建设第一批试点工作的通知。《通知》提出,聚焦新型电力系统有关前沿方向,依托典型项目开展单一方向试点,依托典型城市开展多方向综合试点,探索新型电力系统建设新技术、新模式,推动新型电力系统建设取得突破。坚持重点突破,先期围绕构网型技术、系
6月4日,国家能源局印发关于组织开展新型电力系统建设第一批试点工作的通知。通知提出,聚焦新型电力系统有关前沿方向,依托典型项目开展单一方向试点,依托典型城市开展多方向综合试点,探索新型电力系统建设新技术、新模式,推动新型电力系统建设取得突破。坚持重点突破,先期围绕构网型技术、系统友
北极星氢能网获悉,近日,盐城市人民政府办公室关于印发盐城市国家碳达峰试点建设推进方案的通知。文件指出,推动新能源规模开发利用。强化新能源资源管理,加强陆上风电和海上光伏资源有序开发和合理利用。加快推动海上风电和市场化并网光伏发电项目建设,推进能源供给清洁替代和能源消费电能替代。建
5月29日,尚纬股份12MW分布式光伏发电项目并网仪式在厂区红旗广场举行。乐山高新区党工委副书记武俊、阳光新能源开发股份有限公司西南大区经理梁凯、尚纬股份有限公司领导朱万春、庞超群出席仪式。仪式上,武俊在致辞中回顾了乐山高新区自2022年8月成功申报四川省近零碳排放试点园区以来,系统推进园区
2025年6月10-13日,全球光储行业年度盛会——SNECPVES第十八届(2025)国际太阳能光伏和智慧能源储能及电池技术与装备(上海)大会暨展览会(简称2025SNECPVES国际光伏储能两会)即将震撼开幕!会议时间:2025年6月10-12日会议地点:国家会展中心上海洲际酒店(上海市诸光路1700号)展览时间:2025年6月11-
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
在推动新能源上网电价全面由市场形成的同时,行业面临两大挑战:顶层机制层面,需优化新能源与火电、新型经营主体同台竞价的制度设计;底层技术层面,亟待攻克海量市场主体参与下的优化决策难题。(来源:微信公众号《能源评论》杂志文/钟海旺杨迎作者分别供职于清华大学电机工程与应用电子技术系、清
5月30日,工业和信息化部关于印发《算力互联互通行动计划》的通知,其中提出,推动算力互联在算力资源服务、任务调度、市场交易、开源社区运营等新业态场景应用。推动算力互联在人工智能、科学计算、智能制造、远程医疗、视联网等企业级场景,以及智能驾驶、云渲染、云电脑、云游戏等消费级场景应用。
当前,我国新型电力系统加快建设,新能源逐步向主体电源演进,终端消费电气化水平不断提升,电力远距离配置能力不断增强,新时代电力发展成效显著。与此同时,电力供需平衡压力叠加系统安全稳定风险,电网转型发展问题亟待破解。新时代电网发展要统筹把握好网架结构与支撑电源、新能源与传统机组、交流
5月28日上午,全球能源互联网发展合作组织秘书长伍萱一行到访山东大学,常务副校长吴臻参加会见,共商能源互联网领域产学研协同创新与国际合作新路径。双方就能源政策研究、行业标准建设、复合型人才培养等议题达成多项共识,为推动全球能源可持续发展注入新动能。吴臻系统介绍了山东大学的历史发展、
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
在全球能源变革的十字路口,中国正以“三场替代战役”与“四大突破”为战略支点,开启一场颠覆传统能源格局的深刻变革。这场变革不仅关乎2030碳达峰、2060碳中和的承诺兑现,更将重塑全球新能源产业链的竞争规则。当欧美国家还在能源转型的十字路口徘徊时,中国已用特高压电网贯通山河,以光伏矩阵点亮
当前,我国虚拟电厂发展在各地“多点开花”。以长三角负荷中心为例,浙江组织虚拟电厂多次参与夏季冬季用电高峰期保供,江苏通过空调、热水器等家电聚合形成“虚拟能量池”,上海市聚合的可调节资源最大调节容量等效于一台大型火电机组,虚拟电厂发展逐步由试点示范向规模化发展过渡。然而,虚拟电厂技
习近平总书记强调指出:“加快发展新一代人工智能是我们赢得全球科技竞争主动权的重要战略抓手,是推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源。”所谓人工智能(Artificialintelligence,AI),指的是类人智能,主要研究用于模拟和扩展人的智能的理论和方法、技术和应用系统的一
2025年5月13日,中国—拉美和加勒比国家共同体论坛第四届部长级会议在北京举行。习近平主席在会议开幕式上发表重要讲话,指出中方愿同拉方携手启动五大工程,共谋发展振兴,共建中拉命运共同体。中拉双方要加强发展战略对接,拓展清洁能源等新兴领域合作。站在新的历史起点上,中拉清洁能源合作迎来更
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!