北极星

搜索历史清空

  • 水处理
您的位置:电力火电煤气能源评论正文

深度| 如何以经济性作为优化目标来对多能流综合能源系统进行规划设计?

2018-11-27 10:55来源:电网技术作者:电网技术关键词:能源互联网热电联产生物质能收藏点赞

投稿

我要投稿


由图4可知,在最优容量配比的条件下,系统热子系统的成本主要花费在MHR上,气子系统的主要花费在RSOC上,故降低MHR和RSOC的设备成本可以有效提高IES的经济性。在电子系统中,大电网的电费花费了超过50%的成本,而PV一旦建成后便无需消耗额外成本,所以提高IES中PV的利用率也可以提高系统的经济性。

4.3.3 系统调度策略分析

图5为系统最优容量配比下5个工作日的逐时供热、供气、供电调度策略。从图5(a)可以看出:在晚上用热低谷期,主要由CHP来满足热负荷,产生的多余热量存在多级储热器当中;在白天的用热高峰期,RSOC产生的余热满足了大部分的热负荷,不足的热量由MHR和CHP进行补充。从

35.png

图4 最优容量配比下的系统成本组成

Fig. 4 Composition of the cost of energy for the system under optimum components size

图5(b)可以看出:RSOC在SOEC运行模式下产生的氢气大部分在RSOC处在SOFC运行模式下被消耗,可见RSOC在系统中更多地用做能量转换设备。从图5(c)可以看出:白天RSOC和PV共同满足了所有的电负载,并将多余的电能充入蓄电池备用;到了晚上,RSOC和PV均停止工作,电负载首先由蓄电池中存储的电量来满足,不足的电量由大电网进行补充。

图5中任意时刻系统的供热量等于耗热量,供气量等于耗气量,供电量等于耗电量,说明本文采用的计算模型满足了系统物理上的限制条件,基本实现了模拟实际的过程。

图6表示了蓄电池、储热器和储氢罐的储能状态曲线,从图6可以看出3种储能设备的运用量均较多。对于蓄电池,基本每天都会经历1次完整的充放电循环,总是存储部分白天的电能来供应夜晚

的负载需求。这是因为系统白天的热负荷较大,且系统采用的是FTL运行模式,所以如图7所示,RSOC总是在白天处于SOFC模式来满足系统的热负荷,产生的多余电能充入蓄电池中。同时,PV也只是在白天工作,产生的多余电能也会被充入蓄电池当中。到了晚上,RSOC处于SOEC模式,需要利用白天储存在蓄电池当中的电量来电解制氢,有时蓄电池中的电量会被消耗至本文设定的最大放电深度0.4,不足的电量由大电网来补充。对于储热器,在模拟的5天内没有被充满过,总是在晚上储存少量的热量在白天释放,来削减白天的用热

36.png

图5 最优容量配比下的系统调度策略

Fig. 5 Scheduling strategy of the system under optimum components size

37.png

38.png

高峰。对于储氢罐,本文设定初始时气罐中存有一定量的氢气,则结合图6和图7可以看出,RSOC在晚上处于SOEC模式来电解制氢,产生的氢气储存在储氢罐当中,在白天释放出来供处于SOFC模式下的RSOC使用,同时满足厂房的氢气负荷。

5 结论

本文建立了以电、热、气能量成本最低为目标的多能流分布式综合能源系统容量匹配优化模型。采用区域收缩算法结合SQP算法对模型进行优化求解,得到系统各设备的最优容量配比和模拟周期内电、热、气的优化调度策略,使系统在满足负载的同时具有最低的能量成本。以西安市某厂房办公楼运行15年为例进行分析,结果表明:与目前市场能量单价相比,利用该综合能源系统可以降低电能单价39.9%,降低热能单价90.5%,降低氢气单价74.2%。通过对系统成本组成的分析可知,降低MHR和RSOC的设备成本和提高太阳能电池的利用率可以有效提高系统的经济性。

参考文献

[1] 孙宏斌,潘昭光,郭庆来.多能流能量管理研究:挑战与展望[J].电力系统自动化,2016,40(15):1-8. Sun Hongbin,Pan Zhaoguang,Guo Qinglai.Energy management for multi-energy flow: challenges and prospects[J].Automation of Electric Power Systems,2016,40(15):1-8(in Chinese).

[2] Zhang X,Chan S H,Ho H K,et al.Towards a smart energy network: the roles of fuel/electrolysis cells and technological perspectives[J].Hydrogen Energy,2015,40(21):6866-6919.

[3] Ellabban O,Abu-Rub H,Blaabjerg F.Renewable energy resources: current status, future prospects and their enabling technology[J].Renewable and Sustainable Energy Reviews,2014,39(2):748-764.

[4] 黎静华,桑川川.能源综合系统优化规划与运行框架[J].电力建设,2015,36(8):41-48. Li Jinhua,Sang Chuanchuan.Discussion on optimal planning and operation framework for integrated energy system[J].Electric Power Construction,2015,36(8):41-48(in Chinese).

[5] Jin H,Hong H,Wang B,et al.A new principle of synthetic cascade utilization of chemical energy and physical energy[J].Science in China,2005,48(2):163-179.

[6] Stanislav P,Bryan K,Tihomir M.Smart grids better with integrated energy system[C]//Electrical Power & Energy Conference (EPEC).Montreal: IEEE,2010:1-8.

[7] 张旭. 基于区域供能的多能源系统模型研究分析[D].上海:上海交通大学,2015.

[8] Alabdulwanhab A,Abusorrah A,Zhang X,et al.Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling[J].IEEE Transactions on Sustainable Energy,2015,6(2):606-615.

[9] Zhang X,Shahldehpour M,Alabdulwahab A,et a1.Optimal expansion planning of energy hub with multiple energy infrastructures[J].IEEE Transactions on Smart Grid,2017,6(5):2302-2311.

[10] 张涛,朱彤,高乃平,等.分布式冷热电能源系统优化设计及多指标综合评价方法的研究[J].中国电机工程学报,2015,35(14):3706-3713. Zhang Tao,ZhuTong,Gao Naiping,et a1.Optimization design and multi-criteria comprehensive evaluation method of combined cooling heating and power system[J].Proceedings of the Chinese Soscity for Electrical Engineering,2015,35(14):3706-3713(in Chinese).

[11] Mehleri E D,Sarimveis H,Markatos N C,et a1.A mathematical programming approach for optimal design of distributed energy systems at the neighborhood level[J].Energy,2012,44(1):96-104.

[12] Salimi M,Ghasemi H,Adelpour M,et a1.Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity[J].IET Generation Transmission&Distribution,2015,9(8):695-707.

[13] Belderbos A,Delarue E,D'Haeseleer W.Possible role of power-to-gas in future energy systems[C]//European Energy Market.Lisbon:IEEE,2015:1-5.

[14] Singaravelu E,Hartvigsen J J,Frost L J.Intermediate temperature reversible fuel cells[J].International Journal of Applied Ceramic Technology,2010,4(2):109-118.

[15] Stambouli A B,Traversa E.Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy[J].Renewable & Sustainable Energy Reviews,2002,6(5):433-455.

[16] Burer M,Tanaka K,Favrat D,et al.Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers[J].Energy,2003, 28(6):497-518.

[17] Liang M,Yu B,Wen M,et al.Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism[J].Journal of Power Sources,2009,190(2):341-345.

[18] Mitlitsky F,Blake Myers A,Weisberg A H.Regenerative fuel cell systems[J].Energy Fuels,1998,12(1):56-71.

[19] Barbir,Frano,Tolj,et al.Techno-economic analysis of PEM fuel cells role in photovoltaic-based; systems for the remote base stations[J].International Journal of Hydrogen Energy,2013,38(1):417-425.

[20] Dursun B.Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey[J].Renewable & Sustainable Energy Reviews,2012,16(8):6183-6190.

[21] Zhang X W,Tan S C,Li G J,et al.Components sizing of hybrid energy systems via the optimization of power dispatch simulations[J].Energy,2013(52):165-172.

[22] Zhang X,Li M,Ge Y,et al.Techno-economic feasibility analysis of solar photovoltaic power generation for buildings[J].Applied Thermal Engineering,2016(108):1362-1371.

[23] Ju L,Tan Z,Li H,et al.Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China[J].Energy,2016(111):322-340.

[24] Wang J J,Zhai Z Q,Jing Y Y,et al.Particle swarm optimization for redundant building cooling heating and power stem[J].Applied Energy,2010,87(12):3668-3679.

[25] 李赟,黄兴华.冷热电三联供系统配置与运行策略的优化[J].动力工程,2006,26(6):894-898. LiZhe,Huang Xinghua.Integrated optimization of scheme and operation strategy for CCHP system[J].Journal of Power Engineering,2006,26(6):894-898(in Chinese).

[26] Seeling-Hochmuth G.Optimization of hybrid energy system sizings and operation control[D].Kassel:University of Kassel,1998.

[27] 王成山,洪博文,郭力,等.冷热电联供微网优化调度通用建模方法[J].中国电机工程学报,2013,33(31):26-33. Wang Chengshan,Hong Bowen,Guo Li,et al.A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J].Proceedings of the Chinese Soscity for Electrical Engineering,2013,33(31):26-33(in Chinese).

[28] 周灿煌,郑杰辉,荆朝霞,等.面向园区微网的综合能源系统多目标优化设计[J].电网技术,2018,42(6):1687-1696. Zhou Canhuang,Zheng Jiehui,Jin Zhaoxia,et al.Multi-objective optimal design of integrated energy system for park-level microgrid[J].Power System Technology,2018,42(6):1687-1696 (in Chinese).

[29] 钟杰,张莉,徐宏,等.SOFC热电联供系统应用模拟[J].动力工程学报,2015,35(10):846-852. ZhongJie,Zhang Li,Xu Hong,et al.Application simulation of SOFC-CHP systems[J].Journal of Chinese Society of Power Engineering,2015,35(10):846-852(in Chinese).

[30] 张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术[J].化学进展,2008,20(5):778-787. ZhangWenqiang,Yu Bo,Chen Jing,et al.Hydrogen production through solid oxide electrolysis at elevated temperatures[J].Progress in Chemistry,2008,20(5):778-787(in Chinese).

[31] Yousefi H,Ghodusinejad M H,Noorollahi Y.GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission[J].Energy & Buildings,2017(138):309-317.

[32] Zhang X.A statistical approach for sub-hourly solar radiation reconstruction[J].Renewable Energy,2014,71(71):307-314.

[33] Beccali M,Brunone S,Cellura M,et al.Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings[J].Renewable Energy,2008,33(3):366-382.

[34] 李裕,叶爽,王蔚国.基于天然气自热重整的SOFC系统性能分析[J].化工学报,2016,67(4):1557-1564.Li Yu,Ye Shuang,Wang Weiguo.Performance analysis of SOFC system based on natural gas autothermal reforming[J].CIESC Journal,2016,67(4):1557-1564(in Chinese).

[35] 郑卫东. 分布式能源系统分析与优化研究[D].南京:东南大学,2016.

[36] 梁明德,于波,文明芬,等.阴极支撑Ni-YSZ/YSZ/LSM-YSZ固体氧化物电解池制氢性能研究[J].中国稀土学报,2009,27(5):647-651. Liang Mingde,Yu Bo,Wen Mingfen,et al.Properties of cathode-supported solid oxide electrolysis cells for hydrogen production[J].Journal of the Chinese Rare Earth Society,2009,27(5):647-651(in Chinese).

[37] 宇博智业集团.2012—2016年中国氢气行业发展及预测报告[R].北京:宇博智业集团,2012.

原标题:多能流分布式综合能源系统容量匹配优化与调度研究
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

能源互联网查看更多>热电联产查看更多>生物质能查看更多>