登录注册
请使用微信扫一扫
关注公众号完成登录
由图4可知,在最优容量配比的条件下,系统热子系统的成本主要花费在MHR上,气子系统的主要花费在RSOC上,故降低MHR和RSOC的设备成本可以有效提高IES的经济性。在电子系统中,大电网的电费花费了超过50%的成本,而PV一旦建成后便无需消耗额外成本,所以提高IES中PV的利用率也可以提高系统的经济性。
4.3.3 系统调度策略分析
图5为系统最优容量配比下5个工作日的逐时供热、供气、供电调度策略。从图5(a)可以看出:在晚上用热低谷期,主要由CHP来满足热负荷,产生的多余热量存在多级储热器当中;在白天的用热高峰期,RSOC产生的余热满足了大部分的热负荷,不足的热量由MHR和CHP进行补充。从
图4 最优容量配比下的系统成本组成
Fig. 4 Composition of the cost of energy for the system under optimum components size
图5(b)可以看出:RSOC在SOEC运行模式下产生的氢气大部分在RSOC处在SOFC运行模式下被消耗,可见RSOC在系统中更多地用做能量转换设备。从图5(c)可以看出:白天RSOC和PV共同满足了所有的电负载,并将多余的电能充入蓄电池备用;到了晚上,RSOC和PV均停止工作,电负载首先由蓄电池中存储的电量来满足,不足的电量由大电网进行补充。
图5中任意时刻系统的供热量等于耗热量,供气量等于耗气量,供电量等于耗电量,说明本文采用的计算模型满足了系统物理上的限制条件,基本实现了模拟实际的过程。
图6表示了蓄电池、储热器和储氢罐的储能状态曲线,从图6可以看出3种储能设备的运用量均较多。对于蓄电池,基本每天都会经历1次完整的充放电循环,总是存储部分白天的电能来供应夜晚
的负载需求。这是因为系统白天的热负荷较大,且系统采用的是FTL运行模式,所以如图7所示,RSOC总是在白天处于SOFC模式来满足系统的热负荷,产生的多余电能充入蓄电池中。同时,PV也只是在白天工作,产生的多余电能也会被充入蓄电池当中。到了晚上,RSOC处于SOEC模式,需要利用白天储存在蓄电池当中的电量来电解制氢,有时蓄电池中的电量会被消耗至本文设定的最大放电深度0.4,不足的电量由大电网来补充。对于储热器,在模拟的5天内没有被充满过,总是在晚上储存少量的热量在白天释放,来削减白天的用热
图5 最优容量配比下的系统调度策略
Fig. 5 Scheduling strategy of the system under optimum components size
高峰。对于储氢罐,本文设定初始时气罐中存有一定量的氢气,则结合图6和图7可以看出,RSOC在晚上处于SOEC模式来电解制氢,产生的氢气储存在储氢罐当中,在白天释放出来供处于SOFC模式下的RSOC使用,同时满足厂房的氢气负荷。
5 结论
本文建立了以电、热、气能量成本最低为目标的多能流分布式综合能源系统容量匹配优化模型。采用区域收缩算法结合SQP算法对模型进行优化求解,得到系统各设备的最优容量配比和模拟周期内电、热、气的优化调度策略,使系统在满足负载的同时具有最低的能量成本。以西安市某厂房办公楼运行15年为例进行分析,结果表明:与目前市场能量单价相比,利用该综合能源系统可以降低电能单价39.9%,降低热能单价90.5%,降低氢气单价74.2%。通过对系统成本组成的分析可知,降低MHR和RSOC的设备成本和提高太阳能电池的利用率可以有效提高系统的经济性。
参考文献
[1] 孙宏斌,潘昭光,郭庆来.多能流能量管理研究:挑战与展望[J].电力系统自动化,2016,40(15):1-8. Sun Hongbin,Pan Zhaoguang,Guo Qinglai.Energy management for multi-energy flow: challenges and prospects[J].Automation of Electric Power Systems,2016,40(15):1-8(in Chinese).
[2] Zhang X,Chan S H,Ho H K,et al.Towards a smart energy network: the roles of fuel/electrolysis cells and technological perspectives[J].Hydrogen Energy,2015,40(21):6866-6919.
[3] Ellabban O,Abu-Rub H,Blaabjerg F.Renewable energy resources: current status, future prospects and their enabling technology[J].Renewable and Sustainable Energy Reviews,2014,39(2):748-764.
[4] 黎静华,桑川川.能源综合系统优化规划与运行框架[J].电力建设,2015,36(8):41-48. Li Jinhua,Sang Chuanchuan.Discussion on optimal planning and operation framework for integrated energy system[J].Electric Power Construction,2015,36(8):41-48(in Chinese).
[5] Jin H,Hong H,Wang B,et al.A new principle of synthetic cascade utilization of chemical energy and physical energy[J].Science in China,2005,48(2):163-179.
[6] Stanislav P,Bryan K,Tihomir M.Smart grids better with integrated energy system[C]//Electrical Power & Energy Conference (EPEC).Montreal: IEEE,2010:1-8.
[7] 张旭. 基于区域供能的多能源系统模型研究分析[D].上海:上海交通大学,2015.
[8] Alabdulwanhab A,Abusorrah A,Zhang X,et al.Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling[J].IEEE Transactions on Sustainable Energy,2015,6(2):606-615.
[9] Zhang X,Shahldehpour M,Alabdulwahab A,et a1.Optimal expansion planning of energy hub with multiple energy infrastructures[J].IEEE Transactions on Smart Grid,2017,6(5):2302-2311.
[10] 张涛,朱彤,高乃平,等.分布式冷热电能源系统优化设计及多指标综合评价方法的研究[J].中国电机工程学报,2015,35(14):3706-3713. Zhang Tao,ZhuTong,Gao Naiping,et a1.Optimization design and multi-criteria comprehensive evaluation method of combined cooling heating and power system[J].Proceedings of the Chinese Soscity for Electrical Engineering,2015,35(14):3706-3713(in Chinese).
[11] Mehleri E D,Sarimveis H,Markatos N C,et a1.A mathematical programming approach for optimal design of distributed energy systems at the neighborhood level[J].Energy,2012,44(1):96-104.
[12] Salimi M,Ghasemi H,Adelpour M,et a1.Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity[J].IET Generation Transmission&Distribution,2015,9(8):695-707.
[13] Belderbos A,Delarue E,D'Haeseleer W.Possible role of power-to-gas in future energy systems[C]//European Energy Market.Lisbon:IEEE,2015:1-5.
[14] Singaravelu E,Hartvigsen J J,Frost L J.Intermediate temperature reversible fuel cells[J].International Journal of Applied Ceramic Technology,2010,4(2):109-118.
[15] Stambouli A B,Traversa E.Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy[J].Renewable & Sustainable Energy Reviews,2002,6(5):433-455.
[16] Burer M,Tanaka K,Favrat D,et al.Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers[J].Energy,2003, 28(6):497-518.
[17] Liang M,Yu B,Wen M,et al.Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism[J].Journal of Power Sources,2009,190(2):341-345.
[18] Mitlitsky F,Blake Myers A,Weisberg A H.Regenerative fuel cell systems[J].Energy Fuels,1998,12(1):56-71.
[19] Barbir,Frano,Tolj,et al.Techno-economic analysis of PEM fuel cells role in photovoltaic-based; systems for the remote base stations[J].International Journal of Hydrogen Energy,2013,38(1):417-425.
[20] Dursun B.Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey[J].Renewable & Sustainable Energy Reviews,2012,16(8):6183-6190.
[21] Zhang X W,Tan S C,Li G J,et al.Components sizing of hybrid energy systems via the optimization of power dispatch simulations[J].Energy,2013(52):165-172.
[22] Zhang X,Li M,Ge Y,et al.Techno-economic feasibility analysis of solar photovoltaic power generation for buildings[J].Applied Thermal Engineering,2016(108):1362-1371.
[23] Ju L,Tan Z,Li H,et al.Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China[J].Energy,2016(111):322-340.
[24] Wang J J,Zhai Z Q,Jing Y Y,et al.Particle swarm optimization for redundant building cooling heating and power stem[J].Applied Energy,2010,87(12):3668-3679.
[25] 李赟,黄兴华.冷热电三联供系统配置与运行策略的优化[J].动力工程,2006,26(6):894-898. LiZhe,Huang Xinghua.Integrated optimization of scheme and operation strategy for CCHP system[J].Journal of Power Engineering,2006,26(6):894-898(in Chinese).
[26] Seeling-Hochmuth G.Optimization of hybrid energy system sizings and operation control[D].Kassel:University of Kassel,1998.
[27] 王成山,洪博文,郭力,等.冷热电联供微网优化调度通用建模方法[J].中国电机工程学报,2013,33(31):26-33. Wang Chengshan,Hong Bowen,Guo Li,et al.A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J].Proceedings of the Chinese Soscity for Electrical Engineering,2013,33(31):26-33(in Chinese).
[28] 周灿煌,郑杰辉,荆朝霞,等.面向园区微网的综合能源系统多目标优化设计[J].电网技术,2018,42(6):1687-1696. Zhou Canhuang,Zheng Jiehui,Jin Zhaoxia,et al.Multi-objective optimal design of integrated energy system for park-level microgrid[J].Power System Technology,2018,42(6):1687-1696 (in Chinese).
[29] 钟杰,张莉,徐宏,等.SOFC热电联供系统应用模拟[J].动力工程学报,2015,35(10):846-852. ZhongJie,Zhang Li,Xu Hong,et al.Application simulation of SOFC-CHP systems[J].Journal of Chinese Society of Power Engineering,2015,35(10):846-852(in Chinese).
[30] 张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术[J].化学进展,2008,20(5):778-787. ZhangWenqiang,Yu Bo,Chen Jing,et al.Hydrogen production through solid oxide electrolysis at elevated temperatures[J].Progress in Chemistry,2008,20(5):778-787(in Chinese).
[31] Yousefi H,Ghodusinejad M H,Noorollahi Y.GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission[J].Energy & Buildings,2017(138):309-317.
[32] Zhang X.A statistical approach for sub-hourly solar radiation reconstruction[J].Renewable Energy,2014,71(71):307-314.
[33] Beccali M,Brunone S,Cellura M,et al.Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings[J].Renewable Energy,2008,33(3):366-382.
[34] 李裕,叶爽,王蔚国.基于天然气自热重整的SOFC系统性能分析[J].化工学报,2016,67(4):1557-1564.Li Yu,Ye Shuang,Wang Weiguo.Performance analysis of SOFC system based on natural gas autothermal reforming[J].CIESC Journal,2016,67(4):1557-1564(in Chinese).
[35] 郑卫东. 分布式能源系统分析与优化研究[D].南京:东南大学,2016.
[36] 梁明德,于波,文明芬,等.阴极支撑Ni-YSZ/YSZ/LSM-YSZ固体氧化物电解池制氢性能研究[J].中国稀土学报,2009,27(5):647-651. Liang Mingde,Yu Bo,Wen Mingfen,et al.Properties of cathode-supported solid oxide electrolysis cells for hydrogen production[J].Journal of the Chinese Rare Earth Society,2009,27(5):647-651(in Chinese).
[37] 宇博智业集团.2012—2016年中国氢气行业发展及预测报告[R].北京:宇博智业集团,2012.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在推动新能源上网电价全面由市场形成的同时,行业面临两大挑战:顶层机制层面,需优化新能源与火电、新型经营主体同台竞价的制度设计;底层技术层面,亟待攻克海量市场主体参与下的优化决策难题。(来源:微信公众号《能源评论》杂志文/钟海旺杨迎作者分别供职于清华大学电机工程与应用电子技术系、清
5月30日,工业和信息化部关于印发《算力互联互通行动计划》的通知,其中提出,推动算力互联在算力资源服务、任务调度、市场交易、开源社区运营等新业态场景应用。推动算力互联在人工智能、科学计算、智能制造、远程医疗、视联网等企业级场景,以及智能驾驶、云渲染、云电脑、云游戏等消费级场景应用。
当前,我国新型电力系统加快建设,新能源逐步向主体电源演进,终端消费电气化水平不断提升,电力远距离配置能力不断增强,新时代电力发展成效显著。与此同时,电力供需平衡压力叠加系统安全稳定风险,电网转型发展问题亟待破解。新时代电网发展要统筹把握好网架结构与支撑电源、新能源与传统机组、交流
5月28日上午,全球能源互联网发展合作组织秘书长伍萱一行到访山东大学,常务副校长吴臻参加会见,共商能源互联网领域产学研协同创新与国际合作新路径。双方就能源政策研究、行业标准建设、复合型人才培养等议题达成多项共识,为推动全球能源可持续发展注入新动能。吴臻系统介绍了山东大学的历史发展、
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
在全球能源变革的十字路口,中国正以“三场替代战役”与“四大突破”为战略支点,开启一场颠覆传统能源格局的深刻变革。这场变革不仅关乎2030碳达峰、2060碳中和的承诺兑现,更将重塑全球新能源产业链的竞争规则。当欧美国家还在能源转型的十字路口徘徊时,中国已用特高压电网贯通山河,以光伏矩阵点亮
当前,我国虚拟电厂发展在各地“多点开花”。以长三角负荷中心为例,浙江组织虚拟电厂多次参与夏季冬季用电高峰期保供,江苏通过空调、热水器等家电聚合形成“虚拟能量池”,上海市聚合的可调节资源最大调节容量等效于一台大型火电机组,虚拟电厂发展逐步由试点示范向规模化发展过渡。然而,虚拟电厂技
习近平总书记强调指出:“加快发展新一代人工智能是我们赢得全球科技竞争主动权的重要战略抓手,是推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源。”所谓人工智能(Artificialintelligence,AI),指的是类人智能,主要研究用于模拟和扩展人的智能的理论和方法、技术和应用系统的一
2025年5月13日,中国—拉美和加勒比国家共同体论坛第四届部长级会议在北京举行。习近平主席在会议开幕式上发表重要讲话,指出中方愿同拉方携手启动五大工程,共谋发展振兴,共建中拉命运共同体。中拉双方要加强发展战略对接,拓展清洁能源等新兴领域合作。站在新的历史起点上,中拉清洁能源合作迎来更
为了助力新型电力系统和新型配电系统的构建,2025年5月15日,浙江省轨道交通和能源业联合会联合北极星电力网主办的“第五届智能配电网建设研讨会”在浙江杭州召开。14位专家、学者、企业代表围绕新型配电系统的打造和现代智慧配电网的建设进行了分享交流,共谋智能配电发展蓝图。北极星总裁周荃在致辞
当今世界正处于百年未有之大变局,全球能源危机带来的压力使得能源市场、地缘政治和全球经济无法稳定发展,进一步破坏的风险始终存在。同时,由于能源系统电气化程度的提高,电力的增长速度持续超过能源需求总量的增长,电力供应愈加影响着经济、区域发展以及许多其他领域,电力安全和可负担性在许多国
今年1月,中国电力企业联合会发布数据显示,截至2024年底,我国新能源发电装机容量首次超过火电,新能源与火电的历史角色更替和演变的趋势在新型电力系统建设大背景下已然明显加快。而在这之前的2024年7月,国家相关部委联合下发了《加快构建新型电力系统行动方案》,其中首次提出实施“新一代煤电升级
6月4日,大唐哈尔滨第一热电厂1X660MW超超临界热电联产项目脱硫EP中标结果公示。同方环境股份有限公司中标,中标金额:30960000元。
5月29日,太原市住房和城乡建设局关于印发《太原市城乡建设领域碳达峰实施方案》的通知,通知指出,优化建筑用能结构。积极推动建筑用能低碳化,全市城镇建筑可再生能源替代率力争达到8%。推进建筑光伏一体化应用,新建公共建筑、新建厂房屋顶光伏覆盖率力争达到50%,积极推动在学校、医院、政府机关等
华能山东分公司烟台电厂2×66万千瓦热电联产项目接入系统及其他专题报告编制服务中标候选人公示(招标编号:HNZB2025-04-2-312-01)中标候选人第1名:山东电力工程咨询院有限公司,投标报价:4458000元,质量:满足招标文件要求,服务期:满足招标文件要求。中标候选人第2名:中国电建集团河南省电力勘
这场“蛇吞象”式重组,是滨海能源连续五年亏损后的“生死一搏”。近日,滨海能源公告,拟通过发行股份方式收购关联方沧州旭阳化工有限公司(以下简称“沧州旭阳”)100%股权,标的资产预估达145.8亿元,约为滨海能源总资产的11倍。若交易顺利完成,公司将从负极材料单一业务转型为“负极材料#x2B;尼龙
国家电力投资集团有限公司二〇二五年度第28批集中招标(东北公司阜新发电公司四期2×350MW热电联产机组扩建项目第七批)中标候选人公示一、烟气余热利用装置(DNYZC-2025-04-01-776-01)第一中标候选人:福建龙净环保股份有限公司,投标报价:1466万元(人民币)。第二中标候选人:青岛达能环保设备股
(黑龙江公司)大唐哈尔滨第一热电厂1X660MW超超临界热电联产项目脱硫EP中标候选人公示(招标编号:CWEME-202505HYRTL-W001)第一中标候选人:同方环境股份有限公司,投标报价:30960000.00元,交货期:满足招标文件要求,质量:良好;第二中标候选人:浙江菲达环保科技股份有限公司,投标报价:33910000
5月31日8时58分,我国首套350兆瓦级超超临界燃煤发电机组——国家电投通辽2×350兆瓦智慧热电联产机组项目6号机组通过168小时满负荷试运行,标志着该项目顺利实现“双投”目标,正式投入商业运营。国家电投通辽2×350兆瓦智慧热电联产机组项目投产后,作为内蒙古通辽市最大的热源点,将满足通辽市城区1
5月30日,由中国能建中电工程西北院总承包的陕西榆林能源集团榆神榆横2×350MW热电联产项目1号机组圆满完成168小时试运行,各项运行指标优良,正式投入商业运营。项目位于陕西省榆林市,是“风光火储”多能互补一体化的新型热电联产项目。项目主要建设两台350兆瓦超临界热电联产机组,同步建设高效脱硫
“十五五”是我国经济迈向高质量发展的关键阶段,也是全球能源格局深刻调整的重要时期。在当前和今后一段时间,我国能源电力将持续处于清洁低碳、安全高效转型的大趋势大环境中,如何更加有效地发挥电力在国民经济中的基础和先导作用,促进国家重大发展战略和目标的实现,更好地满足人民群众日益增长的
近期,多座储能电站获最新进展,北极星储能网特将2025年5月26日-2025年5月30日期间发布的储能项目动态整理如下:我国首个大型锂钠混合储能站投产5月25日,我国首个大型锂钠混合储能站——南方电网宝池储能站在文山壮族苗族自治州丘北县正式投产。宝池储能站属于国家新型储能试点示范项目,也是云南省首
5月29日,太原市住房和城乡建设局关于印发《太原市城乡建设领域碳达峰实施方案》的通知,通知指出,优化建筑用能结构。积极推动建筑用能低碳化,全市城镇建筑可再生能源替代率力争达到8%。推进建筑光伏一体化应用,新建公共建筑、新建厂房屋顶光伏覆盖率力争达到50%,积极推动在学校、医院、政府机关等
北极星电力网获悉,6月3日,浙江省能源局印发《浙江省能源领域工程建设项目招投标监管指导意见(试行)》,全文如下:浙江省能源领域工程建设项目招投标监管指导意见(试行)第一条为进一步规范全省能源领域工程建设项目(以下简称“能源工程”)招标投标活动,结合我省能源领域工程建设实际,制订本指
导语长期以来,园区企业获取可溯源、低成本绿电面临核心制度瓶颈:新能源项目通过专用线路直供用户缺乏政策依据。5月30日,国家发展改革委、国家能源局发布《关于有序推动绿电直连发展有关事项的通知》,首次从国家层面明确“绿电直连”这一新能源供用电新模式的规则框架。近年来在全国多点开花的零碳
“十五五”是我国经济迈向高质量发展的关键阶段,也是全球能源格局深刻调整的重要时期。在当前和今后一段时间,我国能源电力将持续处于清洁低碳、安全高效转型的大趋势大环境中,如何更加有效地发挥电力在国民经济中的基础和先导作用,促进国家重大发展战略和目标的实现,更好地满足人民群众日益增长的
国家发展改革委、国家能源局近期发布《关于有序推动绿电直连发展有关事项的通知》(以下简称《通知》),国家能源局有关负责同志接受采访,回答记者提问。问:什么是绿电直连?答:直连是指电源不直接接入公共电网,而通过与用户直接连接的电力线路向单一用户供电,供应的电量可以清晰物理溯源。一是绿
国家发展改革委、国家能源局近期发布《关于有序推动绿电直连发展有关事项的通知》(以下简称《通知》),国家能源局有关负责同志接受采访,回答记者提问。问:什么是绿电直连?答:直连是指电源不直接接入公共电网,而通过与用户直接连接的电力线路向单一用户供电,供应的电量可以清晰物理溯源。一是绿
5月28日,河南省人民政府办公厅关于印发河南省临港产业发展规划(2025—2035年)的通知(豫政办〔2025〕26号)。其中提到,重点发展电力装备、农业机械、工程机械、医疗器械、船舶制造等产业,提高自主设计、制造和系统集成能力,打造先进装备产业集群。扩大特高压输电成套装备、换流阀等产业优势,做
5月26日,广东省能源局发布关于2025年公共机构节能降碳工作安排的通知,通知指出,鼓励公共机构因地制宜推广太阳能、地热能、生物质能等可再生能源利用,优化建筑用能结构,持续推广分布式光伏、新能源汽车以及充电基础设施建设,推进电能替代,扩大“绿电”应用规模,鼓励通过购买绿证等方式促进非化
CBC2025第八届中国(国际)生物质能大会暨展览会于5月22日-23日在杭州开元萧山宾馆顺利举办。与会嘉宾们发表了精彩的演讲,对生物质耦合、生物质气化、生物质原料预处理等内容展开了深入的分析与介绍,为生物质能源产业开拓新的发展路径。生物质能源零碳园区方案吉林宏日新能源股份有限公司高级工程师许
北极星售电网获悉,5月26日,广东省能源局发布关于2025年公共机构节能降碳工作安排的通知。文件提出,鼓励公共机构因地制宜推广太阳能、地热能、生物质能等可再生能源利用,优化建筑用能结构,持续推广分布式光伏、新能源汽车以及充电基础设施建设,推进电能替代,扩大“绿电”应用规模,鼓励通过购买
从“废”到“贵”生物质能价值链日趋成型来源:中国能源观察记者王睿佳生物质能作为全球公认的零碳属性可再生能源,在推动全球能源转型,实现“双碳”目标中扮演着重要角色。我国是生物质资源最丰富的国家之一,生物质能以其独特的属性,成为能源结构优化的战略支点。中国产业发展促进会会长于彤在“20
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!