登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
能源和环境是 21 世纪人类所需要面临的两个重大的问题,新能源的开发和资源综合回收利用是人类可持续发展的基础和方向。近年来,锂离子电池由于质量轻、体积小、自放电小、无记忆效应、工作温度范围宽、可快速充放电、使用寿命长、环保等优势而得到了广泛的应用。最早 Whittingham利用 Li-TiS 体系制成首个锂电池,到 1990 年实现商业化,至今已发展 40 余年,取得了很大的进步。据统计, 2017 年 1~10月中国锂离子电池累计产量为 89.9 亿只,累计增长率达 34.6 %。国际上,锂离子电池在航天电源领域的应用已进入工程化应用阶段, 全球一些公司和军事部门对锂离子电池应用于航天进行了研发, 如美国的 “国家航空和 航天管理局 ”(NASA)、 Eagle-Picher 电池公司、法国的 SAFT公司、日本的 JAXA 公司等。
随着锂离子电池的广泛应用,造成了废旧电池的数量越来越多。预期在 2020 年前后,我国仅纯电动(含插电式)乘用车和混合动力乘用车动力电池的累计报废量在 12~17 万 t。锂电池虽被称为“绿色电池”,不含有 Hg、 Pb 等有害元素,但其正极材料、电解质溶液等会对环境造成很大的污染,同时造成资源的浪费。因此,综述国内外废旧锂电池回收处理的工艺现状,并在此基础上总结废旧锂离子电池回收工艺的发展方向,具有十分重要的现实意义。
1 锂离子电池的主要成分
锂离子电池主要成分包含外壳、电解液、阳极材料、阴极材料、胶黏剂、铜箔和铝箔等。其中, Co、 Li、 Ni 质量分数分别为 5%~15%、 2%~7%、0.5%~2%,还有 Al、 Cu、 Fe 等金属元素;从主要成分价值占比来看,阳极材料和阴极材料约占33%和 10%,电解液和隔膜分别约占 12%和 30%。废旧锂离子电池中主要回收的金属是 Co 和 Li,主要集中在阳极材料上的钴锂膜上。尤其是我国钴资源相对贫乏,开发利用较为困难,而在锂离子电池中钴的质量分数约占 15%,是伴生钴矿的 850 倍左右。目前, 以 LiCoO2为正极材料的锂离子电池应用较为广泛,其中含有钴酸锂、六氟磷酸锂、有机碳酸酯、碳素材料、铜、铝等化学物质, 主要金属含量如表 1 所示。
2 废旧锂离子电池回收工艺
采用湿法工艺处理废旧锂离子电池是目前研究较多且较为成熟的工艺,工艺流程如图 1 所示。主要经历 3 个阶段: 1)将回收的废旧锂离子电池进行彻底放电、简单的拆分破碎等预处理,筛分后获得主要电极材料或破碎后经焙烧除去有机物后得到电极材料; 2)将预处理后得到的电极材料溶解浸出,使各种金属及其化合物以离子的形式进到浸出液中; 3)浸出液中有价金属的分离与回收,这一阶段是废旧锂电池处理过程的关键,也是多年来研究者们研究的重点与难点。目前,分离回收的方法主要有溶剂萃取法、沉淀法、电解法、离子交换法、盐析法等。
2.1 预处理
2.1.1 预放电
废旧锂离子电池中大都残余部分电量,在处理之前需要进行彻底放电,否则在后续处理中,残余的能量会集中释放出大量的热量,可能会造成安全隐患等不利影响。废旧锂电池的放电方式可以分为 2 种,分别是物理放电和化学放电。其中,物理放电为短路放电,通常利用液氮等冷冻液对其先进行低温冷冻,后穿孔强制放电。早期,美国 Umicore、Toxco公司采用液氮对废旧锂电池进行低温(-198 ℃)放电,但这种方法对设备的要求较高,不适合大规模工业应用;化学放电是在导电溶液(多为 NaCl 溶液)中通过电解的方式释放残余能量。早期,南俊民等将单体废旧锂电池置于水和电子导电剂的钢制容器中进行放电,但由于锂离子电池的电解液中含有 LiPF6,与水接触后会反应生成毒性很强的 HF,给环境和操作人员带来危害,故需要在放电后立即对其进行碱浸。 近年来,宋秀玲等利用抗坏血酸的酸性、还原性及稳定性构建了化学性质相对温和的硫酸盐溶液放电体系,确定了最佳放电条件为:电解液 MnSO4浓度 0.8 mol/L、 pH =2.78、抗坏血酸的浓度 2 g/L,放电时间 8 h,最终消电电压降低到 0.54 V,满足绿色高效的放电要求。相较而言,化学放电成本更低,操作简单,可满足工业大规模放电的应用,但电解液对金属壳体及设备的腐蚀,会在放电流程中带来不利影响。
2.1.2 破碎分离
破碎分离的过程主要是为了将电极材料与其它物质(有机物等)在机械作用下通过多级破碎、筛选等分离技术联用,实现电极材料的分离富集,以便于后续利用火法、湿法等工艺从中回收有价金属及化合物。机械分离法是目前普遍采用的预处理方法之一,易于实现废旧锂离子电池大规模工业化回收处理。 Shin 等通过粉碎、筛分、磁选、精细粉碎和分类的工序以达到 LiCoO2的分离富集。结果表明,在较好的条件下可以提高目标金属的回收率,但由于锂电池结构复杂,通过该方法很难将各组分彻底分开; Li 等采用了一种新型的机械分离方法,提高了 Co 的回收效率同时降低了能耗与污染。对于拆分出的电极材料,在55 ℃水浴中使用超声波进行冲洗和搅拌 10 min,结果使得 92%的电极材料与集流体金属分离。同时,集流体可以以金属的形式进行回收。
2.1.3 热处理
热处理的过程主要是为了除去废旧锂电池中难溶的有机物、碳粉等,以及对于电极材料和集流体的分离。目前采用的热处理方式多为高温常规热处理,但存在分离深度低、环境污染等问题,为进一步改善工艺,近年来,对高温真空热解法的研究越来越多。 Sun 等采用高温真空热解的方法将废旧电池材料在粉碎之前于真空炉中进行热解,以 10 ℃·min-1 的速度升温至 600 ℃后恒温30 min,有机物以小分子液体或气体的形式分解,可单独收集后用于化学原料,同时,经高温热解后, LiCoO2层变得疏松易于从铝箔上分离,有利于最终无机金属氧化物可以有效分离富集;孙亮采用真空热解的方法预处理废旧锂离子电池正极材料。结果表明,当体系压强低于 1.0 kPa,反应温度 600 ℃,反应时间 30 min 时,有机粘结剂可以被基本除去,正极活性物质大部分从铝箔上脱落分离,铝箔保持完好。相较于常规热处理技术,高温真空热解法可单独回收有机物,提高资源综合利用率,同时可以避免有机材料分解后产生的有毒气体对环境造成污染,但对其设备要求高、操作复杂,工业化推广具有一定的局限性。
2.1.4 溶解法
溶解法是根据“相似相溶”的原理,利用正极材料与黏结剂(多为 PVDF)、铝箔等杂质在有机溶剂中的溶解性的差异实现分离富集。常选取强极性有机溶剂溶解电极上的 PVDF,使正极材料从集流体铝箔上脱落。梁立君[22]选取多种极性有机溶剂对破碎后的正极材料进行溶解分离对比实验,发现最佳溶剂为 N-甲基吡咯烷酮(NMP),在最优条件下可以使正极材料活性物质 LiFePO4及碳的混合物与铝箔彻底分离; Hanisch 等采用溶解法对经过热处理和机械压力分离及筛分过程后的电极进行彻底的分选。将电极在 90 ℃下置于 NMP 中处理 10~20 min,重复 6 次后,电极材料中的粘结剂可以完全溶解,分离效果较为彻底。溶解法相较于其它前处理方法,操作简单,同时可以有效提高分离效果及回收速率,工业化应用前景较好。目前,黏结剂多采用 NMP 溶解分离,效果较好,但因其价格较高、易挥发、低毒性等不足,从而在一定程度上限制了其在工业上的推广应用。
2.2 电极材料的溶解浸出
溶解浸出过程是对预处理后得到的电极材料进行溶解浸出,使电极材料中的金属元素以离子的形式进入到溶液中,然后通过各种分离技术选择性分离回收其中的主要有价金属 Co、 Li 等。溶解浸出的方法主要包括化学浸出和生物浸出法。
2.2.1 化学浸出
传统的化学浸出方法是通过酸浸或碱浸的方式实现电极材料的溶解浸出,主要包括一步浸出法和两步浸出法。一步浸出法通常采用无机酸 HCl、 HNO3、H2SO4 等作为浸出剂对电极材料直接溶解浸出,但这种方法会产生 Cl2、 SO2等有害气体,故需要进行尾气处理。研究发现,在浸出剂中加入 H2O2、Na2S2O3 等还原剂,可有效解决这一问题,同时Co3+被还原成更易于溶解到浸出液中的 Co2+,从而提高浸出率。潘晓勇等采用 H2SO4-Na2S2O3体系浸出电极材料,分离回收 Co、 Li。结果表明,H+浓度 3 mol/L、 Na2S2O3 浓度 0.25 mol/L、液固比15:1, 90 ℃下反应 2.5 h, Co、 Li 的浸出率高于97 %;陈亮等采用 H2SO4+H2O2 为浸出剂对活性物质进行浸出。结果表明:液固比 10:1、 H2SO4浓度 2.5 mol/L、 H2O2 加入量 2.0 mL/g(粉料)、温度 85 ℃、浸出时间 120 min, Co、 Ni 和 Mn 的浸出率分别达到 97%、 98%和 96%;陆修远等采用 H2SO4+还原剂体系浸出废旧高镍型锂离子电池正极材料( LiNi0.6Co0.2Mn0.2O2),研究了不同还原剂(H2O2、葡萄糖及 Na2SO3)对金属浸出效果的影响。结果表明:在最适宜条件下,采用 H2O2作为还原剂,主要金属的浸出效果最好, Li、 Co、Ni、 Mn 的浸出率分别为 100%、 96.79%、 98.62%、97%。综合看来,采用酸-还原剂作为浸出体系,相较于直接酸浸,因浸出率更高、反应速率更快等优点成为目前工业上处理废旧锂离子电池的主流浸出工艺。两步浸出法是将废旧锂电池经过简单预处理后先进行碱浸出,使 Al 以 NaAlO2的形式进入到溶液中,之后加入浸出酸,并在其中加入还原剂H2O2 或 Na2S2O3 做为浸出液,得到的浸出液通过调节 pH 值,选择性沉降 Al、 Fe 并分别回收,将所获得的母液进一步进行 Co、 Li 元素的提取和分离。邓朝勇等[27]采用 10 %NaOH 溶液进行碱浸,Al 浸出率为 96.5%, 2 mol/L 的 H2SO4 和 30%H2O2进行酸浸, Co 浸出率为 98.8%。浸出原理如下:
2LiCoO2+3H2SO4+H2O2→Li2SO4+2CoSO4+4H2O+O2
将所获得的浸出液,经多级萃取等工艺,最终 Co 的回收率达到 98%以上。该方法流程简单,易于操作,对设备腐蚀小,污染少。
2.2.2 生物浸出法
随着技术的发展,生物冶金技术因其高效环保、成本低等优势有着更好的发展趋势及应用前景。生物浸出法是通过细菌的氧化作用,使金属以离子的形式进入到溶液。近年来,有研究者研究了采用生物浸出法浸出废旧锂离子电池中的有价金属。 Mishra 等采用无机酸和嗜酸菌酸氧化亚铁硫杆菌对废旧锂电池进行浸出,利用元素 S 和 Fe2+作为能源,在浸出介质中产生 H2SO4 和 Fe3+等代谢产物,利用这些代谢物溶解废旧锂离子电池中的金属。研究发现, Co 的生物溶解速度比 Li 快。 Fe2+可以促进生物菌生长繁殖, Fe3+与残留物中的金属共沉淀。较高的液固比,即金属浓度的增加,会抑制细菌的生长,不利于金属的溶解; Marcináková 等在两种不同介质下采用嗜酸细菌的聚生体对 Li 和Co 进行生物浸出。富含营养的培养基由细菌生长所需的所有矿物质构成,低营养培养基以 H2SO4和元素 S 作为能源。研究发现,在富营养环境中,Li 和 Co 的生物浸出率分别为 80%和 67%;而在低营养环境中,仅溶解 35%的 Li 和 10.5%的 Co。生物浸出法相较于传统的酸-还原剂浸出体系,具有成本低、绿色环保等优势,但主要金属(Co、 Li 等)的浸出率相对较低,工业化大规模处理具有一定的局限性。
2.3 浸出液中有价金属元素的分离回收
2.3.1 溶剂萃取法
溶剂萃取法是目前废旧锂电池金属元素分离回收应用较为广泛的工艺,其原理是利用有机溶剂与浸出液中的目标离子形成稳定的配合物,再采用适当的有机溶剂将其分离,从而提取目标金属 及 化 合 物 。 通 常 采 用 的 萃 取 剂 主 要 有Cyanex272、 Acorga M5640、 P507、 D2EHPA 和PC-88A 等。Swain 等[30]研究了 Cyanex 272 萃取剂浓度对Co、 Li 分离的影响。结果表明,浓度在 2.5~40mol/m3, Co 的萃取率从 7.15%增加到 99.90%, Li的萃取率从 1.36%增加到 7.8%;浓度在 40~75mol/m3, Co 的萃取率基本不变, Li 的萃取率迅速增加到 18 %;浓度高于 75 mol/m3 时, Co 的分离因子随浓度增加而减小,最大分离因子为 15 641。吴芳等两步法浸出后,采用萃取剂 P204 萃取净化浸出液, P507 萃取分离 Co、 Li,后采用 H2SO4反萃,回收后萃取液加入 Na2CO3 选择性回收Li2CO3。 pH 值为 5.5 时, Co、 Li 分离因子达到1×105, Co 的回收率在 99%以上; Kang 等从成分为 5%~20%Co、 5%~7%Li、 5%~10%Ni、 5%有机化学品和 7%塑料的废旧锂离子电池中回收硫酸钴,对于 Co 浓度为 28 g /L 的浸出液,通过调节 pH 值至 6.5 沉降金属离子杂质如 Cu、Fe 和 Al。然后通过 Cyanex 272 从纯化的水相中选择性地萃取 Co,当 pH<6 时, Co / Li 和 Co / Ni 的分离因子接近 750, Co 的总回收率约为 92%。可以发现,萃取剂的浓度对萃取率有着较大的影响,同时通过控制萃取体系的 pH 值,可以实现主要金属(Co 和 Li)的分离。
在此基础上,采用混合萃取体系处理废旧锂离子电池,可以较好的实现主要金属离子的选择性分离回收[33-34]。 Pranolo 等[33]研究了一种混合萃取体系选择性回收了废旧锂离子电池浸出液中的Co 和 Li。结果表明,将 2%(体积比)Acorga M5640添加到 7%(体积比) Ionquest 801 中,可以降低萃取 Cu 的 pH 值,通过控制体系 pH 值使 Cu、Al、 Fe 先被萃取到有机相中,实现了与 Co、 Ni、Li 的分离。然后将体系 pH 值控制在 5.5~6.0,采用 15%(体积比)的 Cyanex 272 将 Co 选择性萃取,萃取液中的 Ni 和 Li 可以忽略不计;张新乐等[35]采用酸浸-萃取-沉淀法回收废旧锂离子电池中的 Co。结果表明,酸浸液 pH 值为 3.5、萃取剂P507 与 Cyanex272 体积比为 1∶ 1 的条件下,经 2级萃取, Co 萃取率为 95.5%。后续采用 H2SO4反萃,反萃液 pH 值为 4 的条件下沉淀反应 10 min,Co 的沉淀率可达 99.9%。综合看来,溶剂萃取法具有能耗低、分离效果好等优点,酸浸-溶剂萃取法是目前工业上处理废旧锂电池的主流工艺,但对于萃取剂的选择以及萃取条件的进一步优化仍是当前该领域的研究重点,以达到更为高效环保、可循环处理的效果。
2.3.2 沉淀法
沉淀法是将废旧锂离子电池预处理后,经溶解、酸溶后获得 Co、 Li 溶液,加入沉淀剂沉降主要目标金属 Co、 Li 等,从而达到金属的分离。Sun 等采用 H2C2O4 作为浸出剂,同时将溶液中的 Co 离子以 CoC2O4的形式沉淀出来,再通过加入沉淀剂 NaOH 和 Na2CO3,将溶液中的 Al和 Li 分别以 Al(OH)3 和 Li2CO3 的形式沉淀分离;潘晓勇[24]等采用 NaOH 将 pH 调至 5.0 左右,能除去大部分 Cu、 Al、 Ni,经进一步萃取除杂后,依次加入 3%H2C2O4和饱和 Na2CO3沉降 CoC2O4和Li2CO3, Co 回收率高于 99%, Li 回收率高于 98%;李金惠等将废旧锂离子电池预处理后筛选出粒径小于 1.43 mm 的物料与浓度为 0.5~1.0 mol/L 的H2C2O4按照固液比 15~25 g/L 反应 40~90 min,得到 CoC2O4 沉淀物和 Li2C2O4浸出液,最终 CoC2O4和 Li2C2O4 的回收率超过 99%。沉淀法处理量大,主要金属的回收率较高,控制 pH 值可以实现金属的分离,易于实现工业化,但容易受杂质离子干扰,相较于萃取法产品纯度较低。因此,该工艺的关键在于选取选择性更好的沉淀剂以及进一步优化工艺条件,控制有价金属离子沉淀析出的顺序,从而提高产品的纯度。
2.3.3 电解法
电解法回收废旧锂离子电池中的有价金属,是对电极材料浸出液中的金属离子采用化学电解的方式,使其被还原成单质或沉积物。该方法不需要添加其它物质,不易引入杂质,可以获得纯度较高的产品,但多种离子存在的情况下会发生共沉积,从而会降低产品纯度,同时会消耗较多的电能。Myoung 等以 HNO3 处理过的废旧锂离子电池正极材料浸出液为原料,采用恒电位法回收钴。电解过程中, O2 与 NO3-发生还原反应, OH-浓度增加,在 Ti 阴极表面生成 Co(OH)2,经热处理得到 Co3O4。化学反应过程如下:2H2O+O2+4e→4OHNO3-+H2O+2e→NO2-+2OHCo3++e→Co2+
Co2++2OH-/Ti→Co(OH)2/Ti
3Co(OH)2/Ti+1/2O2→Co3O4/Ti+3H2O
Freitas 等采用恒电位和动电位技术从废旧锂电池正极材料中回收 Co。结果表明: Co 的电荷效率随着 pH 增大而减小, pH=5.40、电位-1.00V、电荷密度 10.0 C/cm2 时,电荷效率最大,达到96.60%。化学反应过程如下:Co2++2OH-→Co(OH)2(s)
Co(OH)2(s)+2e→Co(s)+2OH-
2.3.4 离子交换法
离子交换法是利用 Co、 Ni 等不同金属离子络合物在离子交换树脂上吸附能力的差异,实现金属的分离及提取。 Feng 等[40]采用离子交换法从正极材料 H2SO4 浸出液中分离回收 Co。从浸出液pH、循环次数等因素研究其对钴的回收率及与其它杂质分离的影响。结果表明,使用 TP207 树脂、控制浸出液 pH=2.5、循环 10 次处理, Cu 的去除率达到 97.44%,钴的回收率达到 90.2%。该方法对目标离子的选择性较强,工艺简单且易于操作,为废旧锂电池中有价金属的提取、回收提供了新途径,但因成本较高从而限制了工业化应用。
2.3.5 盐析法
盐析法是通过在废旧锂离子电池浸出液中加入饱和(NH4)2SO4溶液和低介电常数溶剂,从而降低浸出液的介电常数,使钴盐从溶液中析出。该方法工艺简单、易于操作且成本低,但在多种金属离子存在的条件下,伴随着其它金属盐的析出,从而会降低产品的纯度。金玉健等根据电解质溶液现代理论,利用盐析法回收废旧锂离子电池中的有价金属。在从LiCoO2 为 正 极 的 HCl 浸 出 液 中 加 入 饱 和(NH4)2SO4 水溶液和无水乙醇,当浸出液、饱和(NH4)2SO4 水溶液和无水乙醇的体积比为 2∶ 1∶3 时, Co2+的析出率可达到 92%以上。所得盐析产品为(NH4)2Co(SO4)2 和(NH4)Al(SO4)2,采用分段盐析可使这两种盐分离,从而得到不同的产品。对于废旧锂离子电池浸出液中有价金属的提取与分离,以上是目前研究较多的几种方法。综合考虑处理量、运行成本、产品纯度及二次污染等因素,表 2 总结对比了前文所述的几种金属分离提取的技术方法。
3 结语
目前,锂离子电池在电动能源等方面的应用愈加广泛,废旧锂离子电池数目不容小觑,对废旧锂离子电池中有价金属的回收具有重要的现实意义。现阶段废旧锂离子电池回收工艺主要是前处理-浸出-湿法回收。前处理包括对废旧锂电池进行放电、破碎及电极材料的分离富集等。其中,溶解法操作简单,同时可以有效提高分离效果及回收速率,但目前采用的主要溶剂(NMP)价格昂贵,一定程度上限制了工业化的应用,故寻找更为适合的溶剂是该领域值得研究的方向之一。浸出过程主要是以酸-还原剂作为浸出剂,可以获得较好的浸出效果,但会产生无机废液等二次污染,而生物浸出法具有高效、环保及低成本等优势,但存在主要金属的浸出率相对不高,对于生物菌的选择及浸出条件的优化从而提高浸出率,可能会成为未来浸出过程的研究方向之一。
湿法回收浸出液中的有价金属是废旧锂离子电池回收过程的关键环节,也是近年来研究的重点和难点,主要的方法有溶剂萃取法、沉淀法、电解法、离子交换法、盐析法等。其中,溶剂萃取法是目前应用较多的方法,具有污染小、能耗低、分离效果好及产品纯度高等显著优势,对于更为高效廉价的萃取剂的选择和研发从而有效降低运行成本,以及多种萃取剂协同萃取的进一步探究可能是该领域重点研究的方向之一。另外,沉淀法因其回收率高、成本低、 处理量大等优点,也是值得重点研究的另一个方向。现阶段沉淀法存在的主要问题是产品纯度低,因此,对于沉淀剂的选择及工艺条件的优化,控制有价金属离子沉淀析出的顺序,从而提高产品纯度将会有较好的工业化应用前景。同时,在废旧锂离子电池处理过程中,不可避免会产生废液、废渣等二次污染,在资源化最大程度利用的同时要将二次污染的危害降至最低,以实现废旧锂离子电池绿色环保、高效及低成本回收。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,10月21日,北京市房山区人民政府发布北京卫蓝高性能固态锂离子电池量产建设项目于近日开工。消息显示,北京卫蓝高性能固态锂离子电池量产建设项目位于窦店镇新城组团FS00-0308街区0030地块,总建筑面积约为11.23万平方米,包含12栋建筑单体。一期项目总建筑面积约为4.2万平方米,重
北极星储能网获悉,鹏辉能源10月16日公告,公司拟在驻马店市正阳县新建小动力方形铝壳锂离子电池日产能3万支和电容式锂离子电池日产能50万支项目,计划总投资10亿元。本次投资项目的资金来源为公司自有或自筹资金,公司预计将通过股债结合的方式筹集项目建设资金。
北极星储能网获悉,10月16日,中核集团发布福建鼎盛储能项目锂离子电池60MWh储能配套设备采购招标公告。公告显示,本次招标为招标为福建鼎盛钢铁有限公司3MW超级电容+60MWh锂离子电池混合储能项目。包括但不限于60MWh锂离子电池的供货、检验、试验、包装、运输、交货、安装、调试及验收等相关内容。原
北极星储能网获悉,10月14日晚间尚太科技公告,公司拟以自有资金或自筹资金在马来西亚设立全资孙公司,并投资建设马来西亚年产5万吨锂离子电池负极材料项目(下称“马来西亚项目”)。据披露,上述马来西亚全资孙公司注册资本为1000林吉特或其他等值货币(后续拟进行增资),公司性质为私人有限责任公
10月10日上午,星恒电源(滁州)年产4GWh锂离子电池项目封顶仪式在安徽省滁州市中新苏滁高新区举行。项目总投资18.3亿元,计划年内竣工投产,项目建成投产后可实现年产值约23.4亿元,将凭借更高效率、更高水准的生产制造工艺,为开拓轻型车锂电池市场、提升锂电渗透率,提供充足的、高品质的合规锂电池
锂离子电池因其能量密度高、循环寿命长等优点在储能领域得到广泛应用。但锂电池热失控引发的火灾爆炸事故频发,已成为制约其大规模推广的关键瓶颈。本文拟对锂电池热失控机理进行深入分析,并探讨提升其安全性能的改善策略,重点介绍首航PowerMaster集中储能系统产品中采用的先进液冷电池舱技术。锂离子电
北极星储能网获悉,当地时间9月23日,加拿大蒙特利尔港码头一个运输锂离子电池的集装箱着火。据消息人士称,是一名值班人员发现一个40英尺集装箱冒出浓烟,该集装箱是装有用于电动汽车的动力电池。据一份报告称,该集装箱来自波兰,目的地是加拿大温莎,这引发了人们对其将运往汽车行业的猜测。但目前
近日,工业和信息化部等四部门联合印发《关于征集重点工业产品碳足迹核算规则标准研究课题的通知》(政策原文阅读:四部门:征集重点工业产品碳足迹核算规则标准研究课题)(以下简称《通知》),提出组织研究和推荐一批重点工业产品碳足迹核算规则标准,对加快构建产品碳足迹管理体系、推动工业绿色低
9月14日,工信部等四部门发布关于征集重点工业产品碳足迹核算规则标准研究课题的通知,其中提到,优先聚焦钢铁、电解铝、水泥、化肥、氢、石灰、玻璃、乙烯、合成氨、电石、甲醇、锂电池、新能源汽车、光伏和电子电器等重点产品,以及其它市场需求迫切、供应链带动作用明显的工业产品。研究内容包括梳
9月9日,江苏常州2024年工业高质量发展专项资金支持强化重大项目招引拟奖励项目名单公示。其中包括江苏国瓷金盛陶瓷科技有限公司的新能源汽车电机配件及芯片封装结构件项目、常州亿晶光电科技有限公司的扩建4GW晶硅高效电池流水线、东方日升(江苏)新能源有限公司的高效电池片生产线改造项目、常州武
北极星储能网获悉,2024年度,江苏无锡市市场监督管理局对储能产品质量进行了监督抽查。共抽查产品4批次,合格率为100%。并且发布了购买储能产品的消费提示:(一)购买时的常识储能产品(电力储能用锂离子电池产品)是通过使用锂离子电池等介质或设备将电能进行储存并在需要时再释放出来的电池产品。
北极星电池网获悉,10月27-30日,山东省烟台市举行高质量发展观摩会议。27日下午,观摩团一行来到福山区创明圆柱锂电池项目。项目占地550亩,计划分两期建设,一期占地260亩,总投资50亿元,规划产能超过6GWh,主要是联合西门子公司打造国际一流、具有完整生产工艺的新能源锂电池数字化智能灯塔示范工
以美国为起点辐射开来的关税加征、欧盟新电池法细则落地、11月美国大选将引发的政策风向变动,是今年来紧紧压在国内新能源产业胸口的三块大石。今日,欧盟正式确认对从中国进口的电动汽车加征为期五年的反补贴关税,面向上汽集团、吉利汽车和比亚迪三家企业的产品,分别加征35.3%、18.8%和17%的关税;
10月12日,中国移动公布了2022-2024年通信用磷酸铁锂电池产品第二批次集采中标候选人名单,中天科技、双登集团、昆宇电源、安驰新能源、安徽沃博源、南都电源、力朗电池、亿纬锂能8家企业中标1192MWh订单,平均中标价0.53元/Wh。这也是通信储能类项目在2024年的唯一一次磷酸铁锂集采招标。数据来源:CN
北极星储能网获悉,10月24日,吉林公主岭经开区管委会与湖南中嶒能源有限公司举行年产5GWh钛锂高能动力电池生产项目签约仪式。据了解,本次签约项目总投资25.25亿元,整体租用吉林公主岭经开区轻量化产业园,建设5条1GWh钛锂高能动力电池生产线,
近日,多家锂盐企业发布三季报,锂价的波动依旧是影响矿企业绩表现的重要因素。现货市场中,昨日电池级碳酸锂平均报价为7.30万元/吨,较3月的年内高点跌幅超过37%,现货市场价格重心持续下移。期货市场中,昨日碳酸锂主力合约2501开于7.53万元/吨,收于7.66万元/吨,维持在8万元/吨的供需平衡成本线左
磷酸铁锂市场需求持续旺盛,市场占比再创新高。动力电池应用分会数据显示,9月国内动力电池装车量54.8GWh,同比增长44.4%。其中,磷酸铁锂电池装车量41.8GWh,同比大增81.4%,占总装车量的76.2%,再创历史新高;三元电池装车量为13.0GWh,占总装车量的23.7%,同比下降12.9%。自2021年起,磷酸铁锂电池
北极星储能网获悉,10月25日,河北省丰宁满族自治县清洁能源发展中心发布关于清洁能源配套产业进展情况。文件显示,国华能源投资有限公司清洁能源产业园区,引进金风科技投资1亿元建设储能系统项目,年产1GW储能系统。目前正在开展竣工验收,预计10月底验收完成。其中,远景能源磷酸铁锂电池生产项目,
自2022年磷酸铁锂完成反超后,便一路“过关斩将”占据了大半市场。时至今年三季度,磷酸铁锂再次让行业刮目相看。9月,我国磷酸铁锂电池装车量41.3GWh,占总装车量75.8%,环比增长18.0%,同比增长70.9%;磷酸铁锂产量环比增加近20%,同比增幅近100%,第一梯队和第二梯队企业订单较饱和。11家企业拿下订
北极星储能网获悉,日前,正定储泰100MW共享储能电站项目在河北保定正定高新区开工。这是河北省首个开工的百兆瓦级飞轮储能调频电站。正定储泰储能项目总投资7亿元,占地约46亩,总建筑面积约1600平方米,建设计划时间为2024年-2025年。主要建设50MW飞轮储能系统、50MW磷酸铁锂电化学储能系统,以及一
近日,国内首条全固态锂电池量产线正式投产。这是由北京经济技术开发区(北京亦庄)企业北京纯锂新能源科技公司(以下简称“纯锂新能源”)投资建设的产线,标志着该企业研发生产的纯锂50安时数全固态电池迈向量产新阶段。固态锂电池有何创新突破?实现固态锂电池的量产又对新能源行业发展有何意义?纯
10月23日,国新办举行新闻发布会,介绍2024年前三季度工业和信息化发展情况。工业和信息化部新闻发言人、总工程师赵志国在回答记者提问时表示,今年联合相关部门出台了《加快推动制造业绿色化发展的指导意见》,加强绿色工厂梯度培育和工信领域节能降碳技术装备推广应用,大力发展绿色生产力。下一步,
10月18日,中国资源循环集团有限公司在天津正式挂牌成立。该公司注册资本达100亿元人民币,成为我国第98家中央企业,也是国内首家专注于资源循环利用的中央企业。股权结构看,国务院国资委、中国宝武钢铁集团有限公司、中国石油化工集团有限公司、华润(集团)有限公司各占20%,中国铝业集团有限公司、中
当地时间21日,梅赛德斯-奔驰在德国库彭海姆开设了欧洲首个集成机械-湿法冶金工艺的电池回收工厂,成为全球首家在自有工厂内实现电池回收闭环的汽车制造商。据介绍,该回收工厂在欧洲首次覆盖了从粉碎电池模块到干燥和处理电池活性材料的所有步骤,预期回收率超过96%。工厂回收材料每年可用于生产超过5
北极星电池网获悉,10月17日,九号公司和格林美股份有限公司(以下简称“格林美”)下属子公司——武汉动力电池再生技术有限公司在江苏无锡达成合作协议。双方将基于彼此优势和需求,以九号门店为触点,利用“格林回收”数字化平台和回收网络体系合作开展针对九号旗下的电动两轮车、电动滑板车、电动平
北极星储能网获悉,10月10日,江苏省科技厅公布了2024年度江苏省碳达峰碳中和科技创新专项资金拟立项目,共有14个项目列入,其中包括宿迁时代储能科技有限公司的百兆瓦时长时储能水系有机液流电池关键技术研究,江苏国信苏盐储能发电有限公司的300MW级高温绝热压缩空气储能集成系统与智能运行关键技术
北极星储能网获悉,10月8日,福建省发展和改革委员会等8单位关于加快构建废弃物循环利用体系有关工作的函,文件提出,推进废旧动力电池循环利用。鼓励动力电池企业积极开展产品碳足迹认证,引导龙头企业积极参与制定动力电池循环利用国际标准。完善新能源汽车动力电池回收利用溯源管理体系,引导新能源
北极星电池网获悉,近日,总投资3.5亿元的冰川锂电池全产业链绿色综合利用项目顺利投产,项目位于福建省龙岩市新罗区能源互联网产业园,新建锂电池梯次拆解回收、破碎分选回收生产线及相应的配套设施设备,实现年拆解回收、生产2万吨锂电池。
9月22日,北京祥龙资产经营有限责任公司(以下简称“祥龙公司”)与宁德时代在北京举行战略合作签约仪式。祥龙公司党委书记、董事长范宏利,祥龙博瑞集团党委书记、董事长刘万国,祥龙博瑞集团党委副书记、董事、总经理张雷,祥龙物流党委书记、董事长陈虹桥;宁德时代监事会主席、生态发展委员会主席
北极星电池网获悉,9月19日,国家交通运输部等十部门印发《关于加快提升新能源汽车动力锂电池运输服务和安全保障能力的若干措施》。其中共提出了四个方面15项措施。力争到2027年,动力锂电池运输的堵点卡点进一步打通,运输效率稳步提升,综合运输结构进一步优化,运输安全保障水平大幅提升,保障新能
北极星储能网获悉,9月3日,上海市发展和改革委员会印发《上海市关于进一步加大力度推进消费品以旧换新工作实施方案》(以下简称《方案》)的通知。《方案》指出,提高新能源公交车及动力电池更新补贴标准。落实交通运输部《新能源城市公交车及动力电池更新补贴实施细则》要求,对更新新能源城市公交车
据外媒报道,电池回收企业RedwoodMaterials近日公布了其正极活性材料工厂的最新建设情况。Redwood宣布,其在内华达州的正极活性材料工厂已经“封顶”,并且即将落成,届时将成为美国第一家商业化供应正极活性材料的工厂。根据计划,工厂初始规划年产能为20GWh,未来将提升至100GWh,可实现年每年对130
北极星电池网获悉,8月28日,上海国际港务(集团)股份有限公司(以下简称“上港集团”)与宁德时代举行战略合作签约仪式。根据协议,双方将在绿色港口、智慧港口、零碳港口建设等领域深化合作,从能源基础设施建设、物流低碳化转型、车船及工程机械电动化、港口数字化智慧化升级、废旧电池回收等领域,
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!