登录注册
请使用微信扫一扫
关注公众号完成登录
1 充电站超级电容组充电拓扑及运行分析
1.1 充电站超级电容组充电拓扑研究
基于超级电容预储能的电车充电站, 采用三相四线PWM 整流装置实现单位功率因数整流。考虑到安全性, 采用隔离DC/DC 变换器将超级电容组与电网电气隔离。提高开关管频率能够有效减小高频变压器体积, 而低电压等级的开关管具有较高的工作频率。采用隔离三电平DC/DC 变换器拓扑, 使开关管电压应力减小为直流母线电压的一半[3], 可以选用低电压等级开关管, 从而提高变换器开关频率, 减小高频隔离变压器体积。充电站超级电容组充电拓扑如图2 所示。
图2 充电站超级电容组充电拓扑
充电站超级电容组充电拓扑为2 级结构, 前级为PWM 整流装置, 实现复杂电网条件下的单位功率因数整流, 将交流电变换为直流电;后级隔离三电平DC/DC 变换器为超级电容组充电。采用三相四线制PWM 整流器, 为隔离三电平DC/DC 变换器提供2 路串联相等的电压。隔离三电平DC/DC 变换器能够有效减小开关管电压应力, 提高开关频率, 且开关管能够实现零电压软开关[4],进一步提高开关管频率。开关频率的提高能够有效减小高频变压器体积。
1.2 基于超级电容预储能的充电站运行分析
基于超级电容预储能的电车充电站运行为:在电车进站前, 为充电站超级电容组预充电;当电车进站后, 将充电站超级电容组能量通过大功率非隔离DC/DC 变换器转移至车载超级电容组,并将车载超级电容组充满。由于电车在不同负载下剩余电荷不同, 因此在电车充电后, 充电站超级电容组剩余电荷量不同。图3 给出了电车充电后超级电容组SOC(荷电状态)。如图3(a)所示,电车负荷较大时, 电车充电前剩余电荷量较小,充电后充电站电容组剩余电荷量较小;如图3(b)所示, 电车负荷较小时, 电车充电前剩余电荷量较大, 充电后充电站电容组剩余电荷量较大。
电车每次充电前, 应将充电站的超级电容组充至满电, 以适用于不同的电车负荷。充电站超级电容组预充电方式主要分为最大电流充电与连续电流充电2 种, 如图4 所示。
图3 电车充电后超级电容组SOC
图4 充电站超级电容组充电方式
最大电流充电方式如图4(a)所示, 时间(t0~t2), (t3~t5)为充电站超级电容组预充电阶段, 采用最大充电电流I omax 为其充电;时间(t2~t3), (t5~t6)为电车进站, 充电站超级电容组的能量转移至车载超级电容组。由于采用最大电流为充电站超级电容组预充电, 在电车进站前, 充电站超级电容组被充满, 充电装置停止运行, 此时充电电流为间歇式。连续电流充电方式如图4(b)所示, 时间(tt0~tt1), (tt2~tt3)为充电站超级电容组充电阶段, 时间(tt1~tt2), (tt3~tt4)电车进站, 充电站超级电容组的能量转移至车载超级电容组。充电站超级电容组在充电过程中, 充电电流连续。
最大电流充电方式下充电电流为间歇式, 充电站超级电容组充满后需要关停充电装置。该充电方式存在两方面问题:首先充电功率为间歇式,对电网冲击较大;其次需要反复的关停充电装置,而PWM 整流装置在启动过程中存在过电流问题。而连续电流充电方式不存在这些问题, 充电功率平稳且不用反复关停充电装置。
2 充电站超级电容组充电控制策略
超级电容组充电装置由PWM 整流器与隔离三电平DC/DC 变换器两部分组成。为增强对电网的适应性, PWM 整流装置应实现不平衡电网下的单位功率因数整流。先以PWM 输出的2 路串联相等的电压作为三电平DC/DC 变换器输入,然后再控制DC/DC 变换器输出电流为超级电容组充电。充电控制策略总体框图如图5 所示,PWM 整流器实现输出电压闭环控制, 输出电容电压差均衡控制, 而DC/DC 变换器实现输出电流闭环控制。
图5 预充电控制策略总体框图
2.1 三相四线PWM 整流器控制策略
三相四线PWM 整流器数学模型已在文献[5]中进行了详细介绍。不平衡电网下, PWM 输出电压会产生二倍频波动, 可采用正负序分离方法分别对正、 负序dq 轴分量进行控制, 抑制输出电压波动。同时零序分量由输出电容电压差控制,三相四线制PWM 整流器控制框图如图6 所示。
图6 三相四线PWM 整流器控制框图
如图6 所示, 输出电容电压差控制环路独立于功率控制环, 输出电容电压差控制系统的给定为0, 经PI 闭环控制后产生零序电流给定信号,经零序电流闭环后产生零序电压给定信号。直流母线电压u DC 经PI 调节器闭环后, 产生直流电流给定信号, 再与直流电压给定信号相乘得到有功功率给定信号。不平衡电网下, 正、 负序电压电流产生的功率[6]为:
式中: pagenumber_ebook=24,pagenumber_book=21为正序电网电压的dq 轴分量;pagenumber_ebook=24,pagenumber_book=21为负序电网电压的dq 轴 分量;pagenumber_ebook=24,pagenumber_book=21为正序并 网电流的dq 轴分量;pagenumber_ebook=24,pagenumber_book=21为负序并网电流的dq 轴分量;P0 为有功功率直流分量;P c2 为有功功率二倍频余弦振荡分量;P s2 为有功功率二倍频正弦振荡分量;Q0 为无功功率直流分量;Q c2 为无功功率二倍频余弦振荡分量;Q s2 为无功功率二倍频正弦振荡分量。
控制器的控制量有pagenumber_ebook=24,pagenumber_book=21共4 个自由度,而功率有P0, P c2, P s2, Q0, Q c2, Q s2 共6 个自由度,只能选其中的4 个功率进行控制。有功P0 必须被控制, 为了避免直流母线产生二倍频波动, 有功功率二倍频分量P c2=0, P s2=0。为了实现单位功率因 数 并 网, 无 功 功 率Q0=0。因 此 选 择P0, P c2,P s2, Q0, 其表达式如式(2)所示。有功功率直流分量给定由输出直流电压闭环得到, pagenumber_ebook=24,pagenumber_book=21, pagenumber_ebook=24,pagenumber_book=21,pagenumber_ebook=24,pagenumber_book=21, 已知功率给定, 对矩阵M 4×4 求逆, 可以得到dq 轴电流给定表达式如式(3)所示。
式中:
由式(3)可知, 除了功率给定, 需要得到电网电压dq 轴分量pagenumber_ebook=24,pagenumber_book=21, 才能得到电流dq轴给定值。在电压检测过程中, dq 轴分量互相影响, 含有二倍频振荡。一种简单的方法是通过添加陷波器消除二倍频振荡[7], 但是陷波器减小了系统相角裕度, 使系统稳定性变差。本文采用正负序解耦合电压检测方法。电网电压的dq 轴分量可以表示为:
式中:pagenumber_ebook=24,pagenumber_book=21为正序、 负序分量平均值, 为有用信息; pagenumber_ebook=24,pagenumber_book=21为变换矩阵, 如式(5)所示。
式中:ω 为锁相环得到的电网电压矢量角频率。
根据式(4)得到电网dq 轴分量检测方法, 如图7 所示。先由LPF(低通滤波器)滤波得到dq 轴分量平均值, 再利用该平均值对交流量进行解耦, 从而有效减小输出平均值振荡。从衰减交流信号以及快速性综合考虑, LPF 截止频率可以选为pagenumber_ebook=24,pagenumber_book=21。电网电流正负序dq 轴分量检测方法同电压检测方法。
图7 电网电压正负序dq 轴分量电压检测方法
如图6 所示, 正负序电流经dq 轴解耦后,经PI 调节器闭环控制, PI 调节器设计方法在文献[8]中已详细介绍。电流闭环控制后得到dq 轴电压控制信号, 再经式(6)的变换将dq 轴控制电压变换至αβ 轴。零序电压控制信号由输出电容电压差控制环路得到。根据αβ0 轴电压给定产生三相PWM 驱动信号S abc。
2.2 超级电容组充电电流控制策略
采用隔离三电平DC/DC 变换器为超级电容组充电, 因此对该变换器采用输出电流闭环控制策略。采用状态空间平均法对隔离三电平DC/DC变换器建模, 得到变换器稳态工作点为V SC=Du DC/2n, 占空比至输出电流的传递函数为:
式中:n 为变压器变比;u DC 为输入直流母线电压;L o 为输出滤波电感。
隔离三电平DC/DC 变换器的输出电流经PI调节器闭环控制的框图如图8 所示, 其中G f i(s)为电流采样的传递函数;T s 为PWM 周期。可采用工程设计法[9]对PI 调节器进行设计, 将系统设计为典型Ⅱ型系统。
图8 输出电流闭环控制框图
为实现超级电容组连续电流充电, 需要对超级电容组SOC 进行估计。在功率应用中, 超级电容组模型可以采用一阶RC 模型等效[10], 如图9 所示。图中R esr 为等效串联内阻,C=C0+ku 随电容电压u 变化。根据图9 所示模型, 得到超级电容组的SOC 如式(8)所示:
图9 超级电容组等效电路模型
考虑到有轨电车充电时间间隔固定, 可以假设电车充电时间间隔已知, 为时间t。电车充电完成后,充电站超级电容组SOC 可以估计出SOCInitial,而在电车下次充电前, 充电站超级电容组应达到额定SOCN=100%的状态, 则可以计算出充电电流如式(9)所示, 计算的电流值作为DC/DC 变换器输出电流给定, 即可实现连续的充电电流。
式中:SOCN 为充电站超级电容组额定SOC;SOCInitial 为电车充电完毕后充电站超级电容组SOC;t 为电车充电时间间隔。
3 仿真验证
采用MATLAB Simulink 仿真实验对本文研究的充电站超级电容组充电策略进行验证。三相四线制PWM 整流器主要参数如表1 所示, 隔离三电平DC/DC 变换器主要参数如表2 所示。采用相电压为220 V 的三相交流为充电站超级电容模组充电, 超级电容组的额定工作电压为700 V,额定容值为25 F, 电车充电时间为30 s, 充电时间间隔为300 s。
3.1 三相四线制PWM 整流仿真验证
主要验证PWM 整流器在不平衡电网下, 单位功率因数整流性能、 输出电压二倍频纹波抑制性能以及输出电容电压均衡性能。仿真过程中,负载为28 kW 时, 在0.4 s 时电网变为不平衡,电网电压由三相对称相电压有效值220 V 突变为u a=220 V, u b=154 V, u c=88 V。B 相电压、 电流波形如图10 所示。电流与电压同相位, 在0.4 s 时刻,B 相电压由峰值311 V 突变至峰值218 V。电压突变后, B 相电流经过2 个周期动态调整, 重新与B 相电压同相位。B 相电流峰值电压跌落前为67 A, 跌落后为83 A。
图10 B 相电压、 电流波形
电网电压变化前后的三相电流波形、 输出电容电压差波形以及输出电压波形如图11 所示。输出电容差在电网电压对称情况下被闭环为0,在电压不对称后, 输出电容差存在低频波动, 但是波动幅值小于1 V。在电网电压突然变化后,输出电压突降至1 457 V, 在0.02 s 后恢复至1 500 V。仿真波形说明PWM 整流器控制策略正确, 能够输出满足要求的稳定电压。
图11 PWM 整流主要波形
3.2 隔离三电平DC/DC 变换器仿真验证
隔离三电平DC/DC 变换器直接为超级电容组充电, 主要通过仿真验证其输出电流控制性能以及输出电流给定的正确性。图12 为输出电流动态响应波形, 在5 s 时输出电流给定由20 A 变为40 A, 输出电流动态调整时间为20 ms, 且在动态调整过程中无超调。充电站对充电电流响应速度不是很敏感, 可以设计为无超调系统, 以保证动态调整过程中不会出现过电流现象, 从而确保充电站安全。图13 为2 个充电站超级电容组2 个充电过程的主要波形, 其中SOC 为超级电容组荷电状态;I o_ref 为根据式(9)计算的充电电流的给定;i SC 为超级电容输入输出电流;u SC 为超级电容组端电压。0~300 s 为第一个充电过程, 充电初始荷电状态为SOCInitial=58.6%, 根据式(9)计算出充电电流为21.7 A;在300 s 时, 超级电容组SOC 充电至100%。采用350 A 电流对电容组放电30 s, 以此模拟电车充电过程。在330 s 时, 电车充电结束, 电容组荷电状态变为SOCInitial=37.5%,根据式(9)计算出充电电流为32.8 A;在630 s 时,超级电容组SOC 充电至100%。在充电过程中电流连续, 不存在反复启停充电设备的情况。以上仿真实验说明根据SOC 计算充电电流的充电策略是正确的。
4 结语
本文对基于超级电容预储能的电车充电站电容组充电策略进行研究, 首先, 研究了充电装置拓扑结构;其次分别研究了三相四线制PWM 整流器的控制以及隔离三电平DC/DC 变换器的输出电流控制策略。通过采用正负序电流分别闭环控制, 使PWM 整流器在不平衡电网下能够输出低脉动电压。同时研究了输出电容电压差闭环控制策略, 使2 个输出电容电压均衡, 为后级隔离三电平DC/DC 变换器提供2 个平衡的电压。基于SOC 的电流给定策略, 采用电流输出闭环控制隔离三电平DC/DC 变换器为超级电容组充电, 使充电电流连续, 对配电网无冲击, 且不存在反复启停充电设备情况。Simulink 仿真实验验证了本文所提充电策略的正确性和有效性。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
电力规划的重点是按照宏观政策指引,以可控成本合理部署各类电力资源来保障长期的电力安全,权衡“低碳、经济、安全”三元目标。过去以常规电源为主、用电负荷平稳增长的电力系统在开展规划时,主要考虑电力电量的供需平衡、各类电力资源的可开发潜力和技术特性、应急备用能力及环境政策要求等约束条件
在山东省日照市五莲县的易捷工具园区,天合光能与中科华辰合作建设的“光储充一体化”项目已正式投运。该项目通过在厂房屋顶安装天合光能至尊光伏组件,搭配天合储能高效工商业储能柜Potentia蓝海系统及电动汽车充电设施,构建了集光伏发电、储能调节和充电服务于一体的综合能源体系,助力日照易捷工具
近日,KonfluxKapitalInternationalGmbH(KKI)与中天科技达成新的战略合作伙伴关系,双方将在奥地利共同开发总容量为176MW的电池储能系统(BESS)项目,此次合作将为欧洲一个不断发展的清洁能源市场带来灵活的、与电网相连的储能基础设施,以支持能源交易、电网稳定以及能源转型。双方同意在指定区域
近日,融捷能源(YoungyEnergy)400kWh液冷户外柜、32kWh高压堆叠户储系统获得全球最知名的安全认证机构之一UL美华认证公司(ULSolutions)颁发的UL1973认证证书,标志着融捷能源液冷户外柜、户储系统在安全性、可靠性和技术性能方面达到国际领先水平,为公司拓展全球市场奠定坚实基础。融捷能源400kWh
北极星风力发电网获悉:5月22日,运达股份总经理程晨光率队赴湖北楚能新能源股份有限公司考察交流,并与楚能新能源董事长代德明、总裁黄锋开展座谈。双方围绕电芯技术研发、产业链协同创新及全球市场拓展等议题达成多项合作共识。代德明表示,运达股份作为全球新能源装备制造领军企业,其智慧储能系统
近期,多座储能电站获最新进展,北极星储能网特将2025年5月19日-2025年5月23日期间发布的储能项目动态整理如下:200MW/800MWh!8种储能技术混合!国家能源集团青海储能电站投产!5月16日,青海公司大柴旦100万千瓦风光储项目配套储能电站工程科翡储能电站在青海省海西蒙古族藏族自治州成功实现投产运行
北极星储能网获悉,5月22日,宁夏中卫鑫华200MW/400MWh储能项目中标候选人公示。第一中标候选人为中建三局安装工程有限公司,投标报价41200万元,折合单价1.030元/Wh;第二中标候选人为广西建工集团第一安装工程有限公司,投标报价40746万元,折合单价1.019元/Wh;第三中标候选人为万邦建工集团有限公
随着全球能源转型的加速推进,可再生能源的快速发展已成为不可逆转的趋势。在这一背景下,储能技术作为连接可再生能源发电与电网、用户之间的关键桥梁,其重要性日益凸显。而在众多储能技术中,储能液流电池以其独特的优势,在2024年迎来了前所未有的发展机遇,全球全钒液流电池已开始逐步走向工程示范
2025年初,136号文件横空出世,我国的新能源行业随之进入了旨在加快构建新型电力系统、推动新能源市场化进程的政策密集且深入的调整期。从政策过山车到市场马拉松,储能行业也正经历从"政策依赖"到"价值创造"的涅槃重生。这一过程不仅重构了储能行业底层逻辑,更催生了技术迭代、模式创新与生态重构的
北极星储能网获悉,5月22日,融源河南新乡长垣市200MW/400MWh独立储能项目EPC总承包招标公告发布,招标人为长垣市融源储能科技有限公司,最高投标控制价28360万元,折合0.709元/Wh。项目拟在新乡市长垣市区域建设,总占地约44亩。储能建设规模为200MW/400MWh,储能电池采用磷酸铁锂电池,储能站电池系
北极星储能网获悉,5月20日,美国商务部宣布了对从中国进口的活性负极材料反补贴调查的初步裁决,决定对合成和天然石墨负极材料征收高达721%的反补贴关税!这一政策的执行,或许将对美国电动汽车和储能系统装机产生重大影响,而美国特斯拉将成为最大受害者。一旦负极材料价格大幅上涨,特斯拉将再次失
随着全球能源结构加速向清洁化转型,风力发电作为主力可再生能源之一,正面临更高效率、更低运维成本的严苛要求。在风力发电机组的核心控制环节——变桨系统中,传统铅酸电池、锂电池等储能设备因响应速度不足、低温性能衰减、维护成本高等问题,逐渐难以满足新型大功率风机的需求。四川金时科技股份有
盖房子用的水泥能用来发电,还能当成“电池”储能。东南大学9日发布最新科研成果,该校科研人员研发出仿生自发电-储能混凝土,将高能耗的水泥变为“绿色能量体”,为构建新型能源体系、实现“双碳”目标提供技术助力。统计数据显示,我国建筑全过程能耗占到全国能源消费总量的45%,碳排放量占全国排放
北极星储能网讯:4月28日,国家发改委发布《绿色低碳先进技术示范项目清单(第二批)》,涉及储能的示范项目有12项,总规模超2.455GW/9.14GWh。其中包括,500兆瓦/2000兆瓦时构网型混合储能示范项目;295兆瓦/590兆瓦时构网型储能电站示范项目;350兆瓦/1400兆瓦时石灰岩地层储气库压缩空气储能电站示
北极星储能网获悉,4月22日,安徽省先进光伏和新型储能产业集群建设领导小组办公室发布《关于征集先进光伏和新型储能领域专家库的通知》。其中明确要求,应具有高级以上专业技术职称,或具有丰富的相关工作经历和管理经验,专业造诣较深,熟知其所在专业或者行业的国内外情况及相关法律、法规、政策和
北极星储能网获悉,4月1日,深圳新宙邦科技股份有限公司披露投资者关系活动记录表,回答投资者提问。对于公司电解液市场后续规划,新宙邦回答:公司核心业务之一为电池化学品,主要产品包括:锂离子电池化学品(如电解液、添加剂、新型锂盐、碳酸酯溶剂)、超级电容器化学品、一次锂电池化学品、钠离子
3月5日,2025年中国储能技术创新应用研讨会在浙江杭州圆满落幕!继4日的广泛讨论之后,行业几位专家结合当前的储能应用发展趋势,从储能人才培养、混合储能技术、储能出海等热点话题分别做了解读。与此同时,业内人员也一同走访了位于浙江杭州的两大电网侧储能项目,通过实地调研探究技术创新对储能项
加利福尼亚大学洛杉矶分校的研究人员最近发表文章,分享了他们使用一种特定类型的塑料实现更高效能源存储的突破性工作,这种新材料可能为全球可持续能源转型提供解决方案。我们在日常生活中到处使用塑料。塑料有助于保持食物新鲜和医疗设备的无菌状态,并且为电子产品提供绝缘。事实证明,塑料还可以做
2月20日晚间,诺德股份(600110)公告,近日,公司全资孙公司深圳百嘉达新能源材料有限公司(简称“百嘉达”)与中创新航(03931)签订了《2025年保供框架协议》,基于双方长期稳定的战略合作,为保证百嘉达铜箔产品的供应稳定,百嘉达承诺2025年向中创新航供应铜箔产品4.5万吨,实际供货量需以正式销
新型储能迎来重大利好!不仅12大技术上榜,还将培育3#x2014;5家生态主导型企业,到2027年,实现高端化、智能化、绿色化发展。对此,有相关机构认为,2025年中国储能装机有望在2024年翻倍增长的基础上,保持较高增速,与此同时,海外市场渗透率有望提升。那么,真锂新媒就带您具体盘点一下,这新型储能1
2月17日,工业和信息化部等八部门关于印发《新型储能制造业高质量发展行动方案》的通知,通知指出,推动“光伏+储能”系统在城市照明、交通信号、农业农村、公共广播、“智慧车棚”等公共基础设施融合应用,鼓励构建微型离网储能系统。原文如下:工业和信息化部等八部门关于印发《新型储能制造业高质量
工业和信息化部等八部门印发《新型储能制造业高质量发展行动方案》。到2027年,我国新型储能制造业全链条国际竞争优势凸显,优势企业梯队进一步壮大,产业创新力和综合竞争力显著提升,实现高端化、智能化、绿色化发展。同时文件还明确,新型储能制造业规模和下游需求基本匹配,培育生态主导型企业3—5
随着全球能源转型的加速推进,可再生能源的快速发展已成为不可逆转的趋势。在这一背景下,储能技术作为连接可再生能源发电与电网、用户之间的关键桥梁,其重要性日益凸显。而在众多储能技术中,储能液流电池以其独特的优势,在2024年迎来了前所未有的发展机遇,全球全钒液流电池已开始逐步走向工程示范
北极星储能网获悉,5月20日,美国商务部宣布了对从中国进口的活性负极材料反补贴调查的初步裁决,决定对合成和天然石墨负极材料征收高达721%的反补贴关税!这一政策的执行,或许将对美国电动汽车和储能系统装机产生重大影响,而美国特斯拉将成为最大受害者。一旦负极材料价格大幅上涨,特斯拉将再次失
北极星储能网获悉,5月21日,安徽世嘉合利新能源有限公司年产5GWh储能系统建设项目研发楼顺利封顶,该项目占地128亩,位于安徽省淮南市潘集经济开发区。据了解,世嘉合利年产5GWh锂电池储能系统生产线项目位于安徽淮南,计划总投资13.6亿元,规划用地约128亩。项目建成达产后,将形成年产5GWh锂电池储
在过去的几年里,全钒液流电池凭借其本质安全、长时可靠等特性,赢得了产业界和资本市场的广泛认可。然而,其商业化进程仍面临初始成本过高的核心挑战。当时间来到2025年,锂电池储能中标价已接近0.4元/Wh,对比之下,液流电池亟需突破成本瓶颈。作为新型储能领域的重要技术路线,全钒液流电池无疑是一
5月20日,在2025能源电力转型国际论坛“新型电力系统技术创新”专题研讨会上,电网头条记者采访了南非电力公司总裁办公室主任提纳格兰·尚玛甘。提纳格兰·尚玛甘认为,全球变暖加剧使得能源转型在减少碳排放方面变得既紧迫又必要。对南非而言,降低碳排放与保障能源安全同等重要。南非也面临可再生能
北极星储能网获悉,5月21日,安徽世嘉合利新能源有限公司年产5GWh储能系统建设项目研发楼顺利封顶。项目选址位于安徽省淮南市淮南潘集经济开发区北区(创业大道东侧、纬四路北侧)。项目占地面积约为84090.26平方米,设有2栋1层生产车间(1#生产车间、2#生产车间)、1栋研发楼(综合办公楼),购置全自
5月20日,中国电建EPC总承包的沙特红海公用事业基础设施项目收到吉尼斯世界纪录证书,成功认证为“全球容量最高的离网电池储能项目”。沙特红海公用事业基础设施项目位于沙特西部的塔布克省,占地2.8万平方公里,是沙特“2030愿景”规划重点项目,也是中资企业在沙特承建的首个大型基建类综合体项目,
北极星储能网讯:5月16日,国家电投黄河水电发布了国家光伏、储能实证实验平台(大庆基地)2024年度数据成果。据悉,国家光伏、储能实证实验平台(大庆基地)位于黑龙江省大庆市,是全球首个光伏、储能户外实证实验平台,也是国家能源局批复的国内首个“国字号”实证实验平台,规划布置实证实验方案640
2025年5月16日,国家光伏、储能实证实验平台(大庆基地)2024年度数据成果发布会在北京召开。国家光伏、储能实证实验平台(大庆基地)位于黑龙江省大庆市,是国家能源局批复的国内首个“国字号”实证实验平台,由国家电投集团黄河公司建设运营,规划布置实证实验方案640种,规模约105万千瓦。大庆基地
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
美国公用事业厂商佐治亚州电力公司(GeorgiaPower)已经开始在佐治亚州建设一个装机容量为765MW的电池储能系统。2024年12月,佐治亚州公共服务委员会(PSC)一致投票通过了佐治亚州电力公司部署电池储能项目组合计划。当时,这些电池储能项目计划部署总装机规模为500MW。根据该公司最近发布的公告,McG
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!