登录注册
请使用微信扫一扫
关注公众号完成登录
图1 锂硫电池各组分质量分布图
Fig.1 Weight distribution of components in lithium sulfur batteries
图1是400W•h/kg锂硫电池各组分的重量分布图,由图可知,活性物质硫在电池中的含量仅占15%。主要原因在于单质硫的密度较小,在电池有限的体积中难以填装大量的硫,加上锂硫电池电解液用量大,使得锂硫电池的实际能量密度远低于理论值,即电池的实现效率低。要实现锂硫电池的高比能量,首先应当提高电池硫的填装量,同时提高硫的比容量,即获得高面容量的正极。
高面容量正极要通过“四高”途径——正极材料高含硫、正极高含硫、正极高载硫及高的活性物质利用率(即硫的比容量)来实现,其中前“三高”是前提条件,在这些前提条件下,要尽可能提高活性物质硫的利用率。如400W•h/kg的锂硫电池,正极片的面容量需达到5 mA·h/cm2以上。假设硫的比容量达到1250mA·h/g,那么正极的载硫量要大于4mg/cm2(单面),一般来说正极含硫量要大于75%,同时满足上述条件,对于锂硫电池来说并非易事。锂硫电池正极存在放电中间溶解-沉积现象,意味着多硫离子浓度梯度和空间分布发生变化,导致扩散路径和反应动力学发生改变。极片含硫和载硫越高,多硫离子浓度梯度和空间分布变化越大,越难以实现硫的高比容量。而提高硫的比容量是提高电池比能量的最直接、有效的途径。以10A•h锂硫软包装电池为例,硫的比容量每提高100mA•h/g,电池的比能量将提高50~ 60 W•h/kg。
如何实现正极高含硫、高载硫条件下硫的高比容量?正极材料的设计制备是关键。我们的正极材料结构设计思路是:①高含硫,材料含硫量大于85%,以保证极片的高含硫;②将硫与经过表面处理的导电碳进行均匀复合,碳材料提供高活性的电化学反应界面;③通过造孔剂的应用,构建具有丰富离子通道的材料微结构,解决放电产物的体积膨胀问题,保证离子扩散的通畅;④利用外壳层的包覆作用适当限制多硫离子的扩散[1-2]。这些措施可以使硫的比容量达到1200mA•h/g以上,但距离硫的理论容量还有差距,硫的比容量挖掘潜力在何处呢?我们认为,从Li2S2还原至Li2S还有418mA•h/g的容量提升空间,是硫的比容量提升潜力所在,但由于是固相-固相反应,动力学速率慢,转化效率低,需要借助催化剂的作用。近年来文献中关于催化Li2S的电化学可逆转化物质的报道越来越多,也出现了1600mA•h/g以上的接近硫的理论比容量的数据[3],说明Li2S2转化至Li2S的过程是可以实现的。我们在正极材料制备时,在外包覆层中引入特殊成分,通过电解液的添加剂与正极材料外包覆层中的特殊成分相互作用,原位生成功能层,来促进Li2S2和Li2S的可逆转化。通过这种原位功能层的作用,所制备的9A•h电池,极片载硫5.2mg/cm2,极片含硫78%的情况下,0.05C倍率下放电,硫的比容量可以达到1500mA•h/g,电池比能量达到605W•h/kg,说明在高含硫、高载硫正极中实现硫的高利用率、达到或接近硫的理论容量是可实现的目标,值得进一步探索。
二
锂硫电池电解液用量高的问题
锂硫电池中电解液用量大,约占电池总重的50%左右,是锂硫电池实现效率不高的主要原因之一。锂硫电池电解液用量大的原因如下。①单质硫溶解放电机制所致。硫是电子、离子绝缘的物质,只有边放电、边溶解,才能保证电子、离子通道的畅通,进而保证电化学反应的顺利进行。在锂硫电池体系中,电解液不仅传输锂离子,还需要溶剂化不同放电阶段的中间产物,因此需要大量的电解液溶剂。②电池循环过程中,负极锂的粉化会消耗大量电解液。由于锂表面的SEI膜不稳定,每次循环都经历破坏、重建的过程,而且随着循环的进行,锂的粉化导致比表面积增加,对电解液的消耗也会增加。
减少电解液用量,是提升锂硫电池比能量的直接途径。一般认为以下三种途径可能减少电解液用量。①少电解液体系的开发。锂硫电池通用的电解液是以一定比例的DOL和DME为混合溶剂,采用LiTFSI为电解质盐,加上LiNO3添加剂组成,在软包装电池的通常用量是E/S为3~3.5。文献中有关于减少锂硫电池电解液用量的报道,如选用对多硫离子溶剂化程度低的腈类溶剂[4]、对多硫离子溶解度低的氟代醚类溶剂[5]及降低溶剂活性,减少副反应,改变溶解-沉积机制为半固态机制等[6],这些工作虽然在一定程度上可以降低电解液用量,但往往以增加极化、降低材料利用率为代价,目前尚无有效的可取代现有的DOL/DME组合的溶剂。我们从降低黏度角度设计电解液的组成和配比。锂硫电池放电过程有多硫离子溶解进入电解液中,本身可以作为电解质盐承担离子输运作用,这样可以适当降低电解质盐的用量,获得低黏度、低密度的电解液,同时不影响电解液的离子电导。以此思路制备的电解液,在降低E/S值时,也不会因为电解液黏度过大而增加电池极化、降低容量。我们将常用醚类溶剂DOL/DME中电解质盐的浓度降至0.6mol/L LiTFSI/0.4mol/L LiNO3,E/S为2.5时,电池的比能量可以达到500W•h/kg以上,E/S比为2.2时,电池的比能量可以达到550W•h/kg以上。由此可见,锂硫电池中的电解液量是可能减少的。探索在溶解机制的锂硫电池中电解液减量以及减量的极限需要引起更多的关注。②寻找非溶解机制的正极材料。与溶解机制的正极材料相比,非溶解机制的正极材料在减少电解液用量上具有先天优势。硫化聚丙烯腈(SPAN)即是此类材料的典型代表。表1对比了溶解机制和非溶解机制含硫正极材料的各项性能。由表可知,除了容量和放电电压低于溶解机制正极材料外,非溶解机制正极材料在循环稳定性上和减少电解液用量方面具有明显优势,如果能找到提升其容量和电压的技术途径,SPAN完全可以用于构建一类新型的高比能、长寿命锂电池。如何提高SPAN的容量和电压呢?首先要研究清楚其储锂机制。我们首次采用固体核磁技术,详细研究了SPAN在放电过程中的碳杂化结构的变化,结果表明,SPAN在首次放电过程中,除了硫-硫键断裂外,一部分吡啶环中的C=N和C=C双键打开与锂发生了反应,形成“共轭双键储锂”,因而SPAN的实际放电比容量超过硫的理论比容量;而在首次充电过程中,一部分碳原子和氮原子未发生脱锂反应,进而使一部分锂离子残留在充电产物中,造成较大的首次不可逆容量损失;但是残留在充电产物中的锂离子有利于提高材料的导电性,因此第二次的放电电压高于首次放电电压[7]。这种新机制的发现,突破了以往一味提高硫含量来提高此类材料容量的局限,开辟了优化结构提高性能的新思路,也为开发同类型新材料提供了理论基础。SPAN与锂离子电池通用的碳酸酯类电解液匹配性良好,可以与锂离子电池正极材料相类比。例如,与三元或富锂锰基正极材料相比,SPAN对锂的电位虽然仅是前者的一半,但容量却超过前者的2倍,完全可以构建高比能量电池体系,值得大家关注。③对锂负极进行表面保护,生成稳定的SEI膜,减少对电解液的消耗,该问题在此不做详细讨论。
三
锂硫电池的倍率问题
影响锂硫电池倍率性能的主要因素有两方面,一是电极的导电性,包括电子导电性和离子传导能力;二是活性物反应机制相关的动力学特性。一般认为,单质硫是电绝缘性物质,而且其正极电化学反应过程涉及固-液-固相转化,动力学性能较差,导致锂硫电池的倍率性能不佳。文献中提高锂硫电池的倍率性能有以下几个途径,一是在材料或电极中引入碳纳米管或石墨烯等增加导电性;二是采用金属氧化物、硫化物、氮化物等具有催化作用的物质,加快Li2S的电化学转化速率;三是通过聚离子性的粘合剂增加离子通道[8]。通过这些技术途径,实现了10C以上的高倍率放电。但要注意这些高倍率数据是在正极硫载量不高、电解液用量很大的扣式电池中实现的,在实际软包装电池中,正极硫载量较高、电解液用量少的情况下,效果如何有待验证。
我们提高电池倍率性能的途径依然从正极材料入手:首先在材料中引入点-线-面导电网络,构筑丰富的电化学反应界面,提高电子导电性;掺入元素硒,进一步提高电子导电性;引入催化剂,提高电化学反应动力学性能;材料多孔结构设计有利于电解液的浸润和离子的输运。基于此正极材料的锂硫电池具有良好的倍率性能:我们所制备的2.4 A•h电池,极片载硫4.8 mg/cm2,极片含硫78%,E/S比为3.3,0.2C充电、0.4C放电的制度下,比能量达到390 W•h/kg,可以循环100周;制备的8.5A•h电池,极片载硫5.2mg/cm2,极片含硫78%,E/S比为2.2,0.1C充放电,比能量达到575W•h/kg;制备的5A•h电池,极片载硫5.2mg/cm2,极片含硫78%, E/S比为3.5,比能量达到400W•h/kg,1C放电容量是0.2C放电容量的90%。这些结果说明正极材料电子导电通路、离子通道构筑及催化作用物质的引入可以实现锂硫电池的高倍率放电。目前提高硫的电化学转化速率的各类具有催化作用的物质(金属氧化物、硫化物、氮化物、磷化物、有机物等)研究报道众多,如何评估比较其作用,机制是什么?哪一类最有潜力?是值得深入研究的方向。
四
锂负极的问题
锂负极的界面不稳定性造成枝晶、粉化和体积变化大等问题是锂二次电池面临的共性问题,在锂硫电池体系中,锂负极的问题显得更加突出,严重制约着锂硫电池的发展,主要原因如下。①锂硫电池的电压较低,仅为2 .1V,其高的比能量来自于电池体系高比容量的贡献,这就意味着电极要具有很高的面容量。例如,锂硫电池的比能量要达到400 W•h/kg,其极片单面需提供5mA•h/cm2以上的面容量,双面达到10 mA•h/cm2,在这样高的面容量下,每次循环,金属锂负极的双面需涉及50μm锂的溶出和沉积的巨大体积变化,而金属锂是无宿主的负极,自身既做活性物,又做集流体,为了获得高的电池比能量,其容量冗余不超过正极容量的3倍,在没有稳定的骨架支撑情况下,会迅速出现枝晶、粉化、断裂的现象,电池容量衰减严重,并可能出现安全问题;②大容量锂的不均匀沉积导致粉化现象严重,会大量消耗电解液溶剂及其中能够稳定锂负极的物质,使电池的循环效率迅速下降,同时伴随容量保持率迅速下降。
目前,国内外研究人员对于提高金属锂负极的稳定性、抑制其枝晶的生长投入极大的热情,正在尝试从多种途径解决问题,如成膜添加剂的应用,锂表面非原位SEI膜的构建、高盐浓度电解液的应用、三维骨架的引入,或者上述两种或几种方法的综合应用等,虽然这些方法均在一定程度上缓解了枝晶的产生,锂的循环稳定性也有些提高(例如,锂硫电池的寿命停留在100次),但距离彻底解决锂负极的问题尚有很大差距。
我们曾经最先将锂硼合金用作锂硫电池的负极,充放电50次之后负极表面的平整光洁度远优于金属锂和锂铝合金负极,寿命也明显延长;与在金属锂上的沉积相比,锂在锂硼合金上的沉积效率既高且稳定,显示出解决金属锂的上述问题良好的苗头[9-10]。
锂负极的表面处理要非常慎重。我们以安时级的软包锂硫电池,探索了锂负极表面的原位或非原位多种处理方式,在用处理过的锂负极组装锂硫电池时发现,锂负极表面微小的改变,即可以引起电池容量的较大变化,我们称之为锂硫电池中的“蝴蝶效应”。众所周知,电池的容量是由低容量的电极决定的,在锂硫电池中,锂负极容量大大过量,锂硫电池的容量应该等同于正极的容量,与负极相关性不大。然而实际组装电池时,却经常出现锂负极经处理后,不但使电池的循环性能发生变化,容量也有明显的提高或降低现象,文献中也有类似报道[11]。说明锂硫电池体系的复杂程度超乎想象,还有我们尚未认知的机制或反应过程,需要更加深入的研究。
五
结 语
目前,锂离子电池在比能量上的进步日新月异,使锂硫电池的发展面临巨大挑战。锂硫电池的研究方兴未艾,实用化进程仍步履蹒跚,其进步需要研究者们基于科学评价体系下认真、踏实的工作。全寿命周期锂硫电池服役和拆解的安全性目前研究的较少,需要后期系统研究。锂硫电池体系复杂,入门容易,进阶困难,这是所有从事锂硫电池研究同仁们的共识。抱着讲好故事、发好文章的心态只会永远停留在锂硫电池研发的初级阶段,触及不到问题实质,也就很难对其实用化起到真正的推动作用。希望本文能为有志于推动锂硫电池实用化的研究者提供一点思路和借鉴。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
据了解,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。16日,相关研究成果在国际学术期刊《自然》上发表。
北极星储能网获悉,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。该项研究成果已于1月16日发表在国际学术
天力锂能4月16日在投资者互动平台表示,公司2023年研发投入占比接近往年水平,暂未研发锂硫电池。
北极星储能网获悉,近日,LG新能源首席技术官申榮埈在于韩国首尔举行的“韩国投资周”会议上表示,LG正开发用于城市空中交通(UAM)与高空“伪卫星”的锂硫电池。同时申榮埈称,锂硫电池具有高能量密度和极大的价格竞争力。据了解,锂硫电池是锂电池的一种。锂硫电池是以硫元素作为电池正极,金属锂作为
北极星电池网获悉,近日,厦门大学董全峰教授团队在锂硫电池硫转化的内生机制研究中取得重要进展。锂硫电池由于其高理论能量密度(2600Wh/kg)、环境友好、硫储量丰富等优点而被认为是最有潜力的下一代高能量密度储能体系。然而,锂硫电池在硫到硫化锂的复杂转换过程中存在着可溶性中间体的穿梭效应以
5月25日欧洲汽车制造商Stellantis集团宣布,已通过旗下风险投资部门投资美国初创电池材料公司利腾(Lyten),推动开发锂硫电动车电池、轻质复合材料和车载感应解决方案。两家公司在声明中说,与传统的锂离子电池不同,利腾公司开发的锂硫电池不使用镍、钴或锰,从而使碳足迹比目前的电池低60%。此外,
2月3日,北极星电池网获悉,安徽通能新能源科技有限公司年产0.3GW锂硫电池项目环境影响评价文件已批复。文件显示,安徽通能新能源科技有限公司拟在安徽省马鞍山市郑蒲港新区马鞍山保税区世港通产业园A1厂房投资建设年产0.3GW锂硫电池项目,项目总占地面积约为16000m2,建设锂硫电池生产车间一座,配备
据媒体报道,日前《自然通讯》公布了美国能源部下属阿贡国家实验室成功开发并测试了全新锂硫电池。研究人员表示,其开发出的电池原型拥有700次的充放电循环次数,且能量密度有机会做到2600Wh/kg,这一电池的能量密度是当前4680电池的10倍左右。“现在是磷酸铁锂和三元锂电池,2022-2025年是固态电池和
碳中和目标下,储能万亿市场正在大幕拉开,于技术创新上亦在持续推进。自有关部门出于安全性能考虑,限制三元电池在储能领域的应用后,磷酸铁锂成为电池储能的主力军。然而,磷酸铁锂能量密度天花板低、低温性能差、材料成本较高的痛点仍未解决。一方面,大储项目往往布局在极端气候地区,要求在高低温
锂硫电池因为具有极高的能量密度和理论比容量,而且作为正极主要材料的单质硫储量丰富、生产成本较低,被认为是未来储能领域中最具应用前景的一类电池。但是在其实际应用之前还有一些技术难题亟待解决,比如活性材料硫的导电性差、正极体积膨胀、穿梭效应等问题严重影响了电池的循环稳定性,尤其是可溶
北极星储能网获悉,8月27日,中创新航董事长、总裁刘静瑜在2022年世界新能源汽车大会上发表视频演讲时表示,中创新航即将推出350Wh/kg高镍多元电池,满足4C快充高锰铁锂电池,以及400Wh/kg半固态电池、全固态电池、锂硫电池等新体系电池。在高电压、三元电池技术方面,中创新航率先采用高电压5系产品实
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
作者:张文婧肖伟伊亚辉钱利勤单位:长江大学机械工程学院引用:张文婧,肖伟,伊亚辉,等.锂离子电池安全改性策略研究进展[J].储能科学与技术,2025,14(1):104-123.DOI:10.19799/j.cnki.2095-4239.2024.0579本文亮点:1.根据锂离子电池热失控机制,总结了在电池部件集流体上最具有创新性的改进方法:将集
北极星固废网获悉,3月4日,为推动再生资源循环利用,规范锂离子电池用再生黑粉原料、再生钢铁原料的进口管理,生态环境部研究制定锂离子电池用再生黑粉原料进口管理要求,并对《关于规范再生钢铁原料进口管理有关事项的公告》(公告2020年第78号)进行修订,形成《关于规范锂离子电池用再生黑粉原料、
作者:刘通1,3杨瑰婷1毕辉4梅悦旎1刘硕1宫勇吉3罗文雷2单位:1.空间电源全国重点实验室,上海空间电源研究所;2.军事科学院国防科技创新研究院;3.北京航空航天大学材料科学与工程学院;4.中国科学院上海硅酸盐研究所引用:刘通,杨瑰婷,毕辉,等.高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂离子电池回收拆解与梯次利用行业发展白皮书(2025年)》。EVTank数据显示,2024年中国废旧锂离子电池实际回收量为65.4万吨,同比仅增长5.0%,其中回收的磷酸铁锂电池及废料达到40.0万吨,占比继续提升至61.2%,三元锂电池及废料为24.3万吨,
北极星储能网获悉,3月4日,生态环境部公开征求关于规范锂离子电池用再生黑粉原料、再生钢铁原料进口管理有关事项的意见。其中提出,符合要求的锂离子电池用再生黑粉原料不属于固体废物,可自由进口。
作者:梅悦旎,屈雯洁,程广玉,向永贵,陆海燕,邵晓丹,张益明,王可单位:空间电源全国重点实验室,上海空间电源研究所引用本文:梅悦旎,屈雯洁,程广玉,等.锂离子电池正极补锂技术研究进展[J].储能科学与技术,2025,14(1):77-89.DOI:10.19799/j.cnki.2095-4239.2024.0767本文亮点:1、本文对当前主流的正极
北极星储能网获悉,3月1日,福鼎时代锂离子电池生产基地5号超级工厂项目正式封顶,该项目以4个月零10天的建设时间,刷新了宁德时代土建阶段的最快建设速度。据了解,福鼎时代锂离子电池生产基地是宁德时代全球布局中的最大单体项目,总投资220亿,福鼎时代5号超级工厂项目厂房单体建筑面积达23万平方米
北极星储能网获悉,2月27日,工信部发布2024年全国锂离子电池行业运行情况。2024年,我国锂离子电池(下称“锂电池”)产业延续增长态势。根据锂电池行业规范公告企业信息和行业协会测算,全国锂电池总产量1170GWh,同比增长24%。行业总产值超过1.2万亿元。电池环节,1–12月消费型、储能型和动力型锂
2月20日下午,中国消防协会在京举行《数据中心锂离子电池消防安全白皮书》发布仪式暨数据中心锂离子电池安全应用技术论坛,正式发布《数据中心锂离子电池消防安全白皮书》。中国消防协会李引擎副会长宣布白皮书正式发布,中国消防协会副会长兼秘书长曹忙根、华为数字能源技术有限公司副总裁方良周分别
根据行业标准制修订计划,相关标准化技术组织已完成《锂离子电池正极材料单位产品能源消耗技术要求》等4项行业标准的制修订工作。在以上标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2025年3月14日。标准编号:SJ/T12001-2025标准名称:锂离子电池正极材料单位产品能源消耗技术要
北极星储能网获悉,3月11日,全球产能最大的短流程钒电解液制备项目在内江投运,这是四川发展(控股)公司贯彻落实国家“双碳”战略、加速布局新型储能战略性新兴产业的第一个重大产业化项目,标志着四川省储能产业建圈强链迈出新步伐。此次投产的年产60000m短流程钒电解液制备项目,采用自主研发的新
北极星储能网获悉,3月5日晚间,石大胜华发布公告,公司控股子公司胜华新材料科技(连江)有限公司(以下简称“胜华连江”)近日与宁德时代签订了《战略合作框架协议》。协议约定,在本协议有效期内(自本协议生效之日起至2025年12月31日),宁德时代向胜华连江采购电解液的需求预计10万吨。具体产品名
3月3日,天赐材料发布《致全球投资者的重要提示》,针对近期资本市场传闻称其与海外某G公司合作开展电解液、六氟磷酸锂及添加剂等产品的代工及产能建设一事,天赐材料明确表示从未授权G公司在国内外进行相关产能建设及产品销售,任何未经公司公告的相关描述均涉嫌欺诈。天赐材料强调,公司已与全球核心
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》。白皮书数据显示,2024年全球六氟磷酸锂出货量达到20.8万吨,同比增长23.1%,总体市场规模为129.6亿元,同比下滑33.3%。EVTank在《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》中表示
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(2025年)》。EVTank数据显示,截至2024年底,全球六氟磷酸锂实际有效产能39.0万吨,中国六氟磷酸锂实际有效产能为37.1万吨/年。EVTank之前发布的《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(202
储能创造价值,市场牵引发展。历经2023年来行业疯狂“内卷”和价格血拼,我国储能产业逐渐从“卷价格”、“卷产能”,开始走向“卷技术”、“卷价值”的新型竞争轨道。低端劣质产能的市场出清加速,头部与二三线企业的行业分化加剧,电力市场改革推动的储能市场化盈利机制亦正在形成,云计算、AI人工智
北极星储能网获悉,2月4日,美国储能解决方案供应商StrytenEnergyLLC宣布,其控股公司StrytenCriticalE-StorageLLC与LargoInc.的子公司LargoCleanEnergyCorp.(LCE)签署协议,计划成立合资企业StorionEnergyLLC,通过电解液租赁模式以提供更具有价格竞争力的高质量美国生产钒电解液,以推动全钒液流电
电解液行业概述电解液是化学电池、电解电容等使用的介质,用于不同行业其代表的内容相差较大。有生物体内的电解液(也称电解质),也有应用于电池行业的电解液,以及电解电容器、超级电容器等行业的电解液。不同的行业应用的电解液,其成分相差巨大,甚至完全不相同。具体的电解液成分和配方可能因不同
北极星储能网获悉,根据国家知识产权局信息显示,山西国润储能科技有限公司申请一项名为“一种全钒液流电池电解液添加剂”的专利,公开号CN119092769A,申请日期为2024年8月。专利摘要显示,本发明涉及能源存储技术领域,公开了一种全钒液流电池电解液添加剂,所述添加剂包括以下质量百分比的组分:改
北极星储能网获悉,11月28日晚间,新筑股份公告称,控股股东四川发展(控股)有限责任公司(以下简称“四川发展(控股)”)拟将直接持有的公司股份6611.38万股(占公司现有总股本的比例为8.60%)和四川发展轨道交通产业投资有限公司(以下简称“四川发展轨交投资”)100%股权无偿划转至蜀道集团或其指
北极星电池网获悉,11月2日,电解液龙头企业天赐材料通报称,公司位于广东广州黄浦区的厂区车间发生火灾,根据公告,现场无人员受伤。天赐材料表示,此次火情事件不涉及电解液及其他电池材料产品和业务,经公司初步评估,预计对公司生产经营影响较小。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!