登录注册
请使用微信扫一扫
关注公众号完成登录
图2:煤直接气化制氢耦合还原铁工艺路线图
我国发展此类技术路径具有资源禀赋优势,工艺成熟、成本较低,但对环境影响较大,存在严重的碳排放问题。
2.焦炉煤气制氢耦合还原铁
焦炉煤气是焦炉干馏煤时产生的挥发性气体,主要成分是氢气(体积百分比为55%~60%)和甲烷(体积百分比为23%~25%);从焦炉煤气中提取氢气,作为还原气体进入竖炉来还原铁矿石。
焦炉煤气制氢耦合还原铁工艺流程一般包括焦炉煤气净化、氢气提纯、竖炉炼铁(DRI)等(见图3)。
图3:焦炉煤气制氢耦合还原铁工艺路线图
此类技术路径可充分利用焦化行业副产的焦炉煤气富氢资源优势,为焦炉煤气高值化利用提供了新思路;制氢工艺流程简单,成熟度高。
在短中期,焦炉煤气与DRI的协同生产,能够有效提高能源整体利用效率并减少碳排放;但对照长远期的碳中和目标来看,焦炉煤气仍存在碳排放问题,焦化产能将逐步削减,使得焦炉煤气–灰氢DRI路径逐步过渡到可再生能源–绿氢DRI路径。
3.多能协同互补制氢耦合还原铁
多能协同互补制氢指通过多种能源之间的相互匹配、梯级利用以高效低碳地生产氢能;氢气作为还原气体进入竖炉来还原铁矿石(见图4)。
图4 多能协同互补制氢耦合还原铁工艺路线图
可再生能源的不稳定性、电力输配限制造成“弃能”现象,通过耦合来源稳定、低成本的灰氢或蓝氢,实现“弃能”的就地转换利用,形成低碳、高效、稳定、低成本的氢源供给。
此类技术路径是未来低碳绿色制氢的主要途径,可有效降低碳排放强度,发展潜力大;但存在地区性多种能源资源的空间分布不匹配现象,储能、多能耦合集成技术尚不成熟,需持续开展技术攻关并实施工程示范。
4.非常规天然气制氢耦合还原铁
非常规天然气资源主要有煤层气、页岩气、砂岩气。相应技术路径细分为两种——
非常规天然气经钼基催化制氢气及苯等副产品,氢气经过净化等过程后直接进入竖炉,生产还原铁;
经水蒸气重整转化、变压吸附等过程得到氢气,然后进入竖炉生产还原铁(见图5)。
图5:非常规天然气制氢耦合还原铁工艺路线图
在我国,煤炭开采过程中伴生了大量的非常规天然气,低浓度瓦斯气体的分离提浓技术是非常规天然气利用的重要前提,但能耗高、成本高。
尽管此类技术路径有助于减少温室气体排放,但非常规天然气属于碳基能源,在碳中和目标的约束下,需要考虑非常规天然气能源利用行业的整体布局优化。
5.低阶煤改性结焦气化一体化富氢燃料气耦合还原铁
低阶煤用于发电,效率低、污染物排放大。开发低阶煤改性结焦气化一体化技术,是满足冶金、机械、化工等行业的焦炭需求,减轻环境污染的有效途径。
此类技术路径是对低阶煤改性结焦的延伸(见图6):
将低阶煤洗选获得精煤,将不粘结的部分精煤与粘结性的煤进行配煤改性,制备具有一定粘结性的改性煤;
与原精煤进行配煤高温热解,生成改性热解炭与挥发性气体;
改性热解炭经气化后产生的气化煤气与富氢的挥发性气体耦合形成富氢气体,进入气基竖炉中还原铁矿石;另一部分气化煤气用于发电或经水煤气变换制氢还原铁。
图6:低阶煤改性结焦气化一体化富氢燃料气耦合还原铁工艺路线图
我国低阶煤炭资源较为丰富,采用相关技术可减少高品质煤炭资源消耗、缓解优质炼焦煤短缺现象,但是碳排放系数依然较高。
目前,此类技术路径处于技术研发到工程示范的过渡阶段,待技术成熟后将快速推动焦化–钢铁行业的融合发展。
(二)煤–焦–氢–铁产业链技术路径性能对比分析
在制氢还原铁的整个生产过程中,铁矿石价格是影响生产成本最大的因素;以上5种技术路径的最大区别在于制氢方式的差异。
①从能耗水平看,多能协同互补制氢的原料基本来源于风、光、生物质等可再生能源,采用电解水或生物质热解/气化等方式制取氢气,能耗(16.2~19.8MJ/kgH2)为几种路径中的最低值;
焦炉煤气制氢生产流程简单,能耗(34.3~139.7MJ/kgH2)略高于多能协同互补制氢;煤气化制氢的能耗(200~240MJ/kgH2)水平最高。
②从经济性看,原料费用或当地基础能源价格决定了化石能源制氢/电解制氢等工艺的氢气生产成本;焦炉煤气制氢的成本(0.3~1.5元/m3)最低;多能协同互补制氢的成本(0.4~5.0元/m3)浮动较大,这是由可再生能源制氢的不稳定性导致的。
③从温室气体减排的角度看,多能协同制氢的碳排放量(1.2~2.0kgCO2eq/kgH2)最小,焦炉煤气制氢(11.68~15.8kgCO2eq/kgH2)、非常规天然气制氢(8.9~12.9kgCO2eq/kgH2)次之,煤气化制氢(18.8~29.0kgCO2eq/kgH2)最大。
表2给出了5种煤–焦–氢–铁产业链技术路径的特性分析。
表2:不同制氢技术耦合直接还原铁技术路径的特性分析
在近期,鉴于我国能源转型发展的迫切性,不推荐采用煤气化制氢还原铁技术,建议推广技术成熟、经济性良好的焦炉煤气方案;
非常规天然气制氢还原铁适宜在资源聚集区局部推广,以低品质的非常规天然气利用为主;低阶煤改性结焦气化一体化富氢燃料气还原铁的优缺点均较突出,可作为重要储备技术开展研究与示范。
着眼长远,焦炉煤气制氢量受限于焦煤/焦炭的产能,必然面临原料产能的瓶颈问题;多能协同互补制氢耦合还原铁的环境友好特性突出,在实现技术突破后有望后来居上成为供氢还原铁的主要来源(见表 3)。
表3:不同制氢技术耦合直接还原铁技术发展潜力与战略选择
按照生产吨钢需要消耗0.4tDRI计算,对应消耗240N·m3(21.36kg)氢气;结合电炉炼钢工艺过程,对不同制氢技术耦合DRI–电炉生产钢铁的综合性能(能耗、碳排放、经济性)进行评价(见表4)。
表4:高炉–转炉技术与电炉炼钢技术综合性能对比分析
从能耗角度看,转炉炼钢的能耗普遍高于DRI电炉炼钢;从碳排放角度看,转炉炼钢碳排放高于DRI电炉炼钢;从成本角度看,DRI电炉炼钢的成本高于转炉炼钢。整体而言,DRI电炉炼钢更具优势。
煤–焦–氢–铁产业链发展技术路径案例分析
山西省是全国首个能源革命综合改革试点地区,资源禀赋和产业基础具备发展煤–焦–氢–铁产业的巨大潜力。
煤炭、焦化、钢铁三大传统产业与氢能这一新兴能源类型的深度结合,将积极驱动山西省绿色低碳转型,同时为我国资源型地区高质量发展提供路径借鉴。
(一)山西省能源资源禀赋与产业发展可行性
山西省制氢气源丰富(见表5),可利用的焦炉煤气约为1.94×1010N·m3,主要分布在晋南的吕梁市、临汾市、运城市、太原市、晋中市、长治市等地;
表5:山西省焦炉煤气、煤成气、可再生能源装机量(2019年)
晋北的大同市、朔州市、忻州市,晋南的运城市等地,风电、水电、光电储能优势明显;全省煤成气资源总量约为8.31×1012m3(占全国的27.7%),晋城市、临汾市、忻州市等地资源丰富。
按照生产1tDRI消耗618N·m3焦炉煤气来估算,山西省焦炉煤气可生产DRI3.138×107t/a。
可再生电力(运行时间为6000h/a)用于电解水制氢,每生产1N·m3的氢气需消耗3.5~5kW·h电力,每生产1tDRI最低需消耗600N·m3氢气,由此估算山西省可再生能源可生产DRI5.124×107t/a。
每生产1tDRI需消耗320N·m3的煤成气(95%CH4),由此估算山西省可用于DRI生产的煤成气产量为4×109m3,即DRI生产潜力约为1.25×107t/a。
2019年,山西省粗钢总产量为6.028×107t,产能利用率为81.7%,集中于晋中、晋南片区(见表6),其中运城市、太原市、临汾市产量超过1×107t,晋中市、吕梁市、晋城市、长治市产量约为3×106~6×106t。
表6:山西省粗钢产量及各类DRI生产潜力测算
山西省焦炭产量为9.696×107t,其中吕梁市产量为2.575×107t,临汾市、长治市、晋中市、运城市产量超过1×107t。
焦炉煤气的产量与焦炭产量成正比,目前山西省的焦炉煤气主要用于制甲醇,但甲醇市场存在产能过剩情况;富余的焦炉煤气用于制氢,在缓解产能过剩问题的同时,可拓宽焦炉煤气资源化利用的途径。
基于山西省能源发展规划,在短期内焦炉煤气可生产氢气用于DRI,未来可用于发展氢能。
山西省焦炉煤气制氢耦合DRI生产与钢铁企业空间布局最为匹配,集中在晋中、晋南地区;煤成气耦合DRI生产与钢铁企业空间布局基本吻合。
可再生能源制氢耦合DRI生产与钢铁企业呈逆分布,未来的规模化利用需构建氢气运输网络、匹配钢铁企业现有格局。
按电炉生产吨钢消耗40%DRI(一般为50%~70%废钢、30%~50%DRI[7])估算,焦炉煤气制氢耦合DRI技术路径可生产粗钢总量为7.845×107t,基本满足现阶段山西省对DRI的需求(粗钢产能规划为7.38×107t)。
煤成气制氢耦合DRI技术路径可生产粗钢总量为3.334×107t,在临汾市、晋城市等焦炉煤气资源相对不足的地区作为补充路径。可再生能源制氢气耦合DRI可生产粗钢总量为1281×108t。
因此,在短期内焦炉煤气制氢耦合DRI技术路径是山西省发展煤–焦–氢–铁产业链的适宜选择,在中长期可采用可再生能源制氢生产DRI。
(二)山西省产业技术路径选择
山西省各市不同路径的制氢潜能见图7。
图7:山西省可再生能源分布情况
晋北地区(大同市、朔州市、忻州市)可再生能源制氢潜能较好,可再生能源以光电、风电为主;晋中南地区(晋城市、临汾市、长治市等)氢能潜力以煤成气制氢为主;晋中南地区(吕梁市、晋中市、临汾市、长治市、运城市)的焦炉煤气制氢潜力较大。
在全国冶金行业绿色低碳发展、钢铁行业控制化石能源消耗的背景下,因煤气化制氢的能耗与碳排放较大,不推荐煤气化制氢耦合DRI作为主要生产路径。
山西省非常规天然气资源丰富,相应分布与钢铁产业分布基本吻合,加之非常规天然气制氢路线的经济性、能耗、碳排放优于煤气化制氢,因此非常规天然气制氢耦合DRI是山西省近期可用的推广方案。
山西省焦化产能高达9×107t,焦炉煤气产量丰富,与钢铁产能布局基本吻合,因此焦炉煤气制氢耦合DRI路径可有效解决焦炉煤气低值利用问题,是山西省近期DRI生产的主要方式。
山西省可再生能源装机量具有明显优势,但与钢铁产能分布不匹配,在成本、储氢、运氢等方面存在技术瓶颈,开展大规模应用尚有距离。
低阶煤改性结焦气化一体化技术富氢燃料耦合DRI技术路径,将焦化行业和钢铁行业进行科学串联,可在解决炼焦煤资源短缺的同时实现焦化企业转型发展,达到整体性的节能减排效果,在山西省部分地区或企业中宜率先推广和示范应用。
(三)山西省产业发展目标与布局
1.发展目标
对标碳达峰、碳中和目标,山西省能源结构转型和产业升级亟需加速推进。煤–焦–氢–铁产业链能够促进山西省煤炭、焦化、钢铁三大传统产业,氢能这一新兴能源产业进行深度融合,高效带动山西省战略新兴产业协同发展、绿色低碳转型。
近期(2021—2035年)以灰氢炼钢为主。
在焦化集聚区、钢焦联合企业或园区,积极推广焦炉煤气制氢DRI;
在非焦化集聚区(如晋北地区),优先推广化石能源耦合可再生能源多能互补制氢DRI;其他区域稳步推广非常规天然气制氢DRI。
立足钢焦联合的产业发展趋势,近期以钢焦联合园区焦炉煤气制氢DRI为主,蓝氢耦合绿氢炼钢逐步实施项目示范。
中期(2035—2050年)以灰氢向绿氢炼钢过渡为主。
随着能源结构转型的深入,山西省焦炭产量逐渐降低,而可再生能源发电比重不断增加,煤–焦–氢–铁产业将形成以化石能源耦合可再生能源多能互补制氢DRI、非常规天然气制氢耦合DRI为主的产业格局。
其中,晋北地区以化石能源耦合可再生能源多能互补制氢DRI为主,晋南地区以非常规天然气制氢DRI、焦炉煤气DRI并存的格局为主,逐步实现灰氢炼钢向绿氢炼钢转换。
远期(2050年以后)以绿氢炼钢为主。
山西省加速发展灰氢、蓝氢(非常规天然气)炼钢向绿氢炼钢转换,到2060年,煤–焦–氢–铁路径将以可再生能源为主,以带有CCUS的非常规天然气制氢技术为辅,形成以绿氢为主的煤–焦–氢–铁产业链格局。
2.产业布局
山西省煤–焦–氢–铁产业链布局建议如下:以朔州市为核心区域的晋北地区战略储备基地,以太原市、长治市、运城市为核心区域的产业集聚区;推进“太–长–运”三角发展布局,打造“1+3”顶层发展格局。
①晋北地区以化石能源耦合可再生能源多能互补制氢DRI为主,以低阶煤改性结焦气化一体化富氢燃料气DRI为辅,开展低阶煤改性结焦气化一体化富氢燃料气DRI项目示范,提高先进技术和设备应用水平。
②在焦化集聚区、钢焦联合企业或园区,推广焦炉煤气制氢DRI。
③在瓦斯抽采利用园区及长治市、晋城市、临汾市、运城市,推广非常规天然气制氢DRI,优先探索煤矿瓦斯DRI。
④晋北三市(忻州、朔州、大同)和阳泉市的钢铁企业较少,可根据当地产业优势开展先进技术研发示范与储备,而不作为煤–焦–氢–铁产业布局的主要区域。
“京津冀”周边地区协同发展的重要内容即建设世界级的清洁高效绿色低碳高端制造产业集群,高端制造是钢铁行业转型升级的核心驱动力。
山西省煤–焦–氢–铁产业链发展,将为“京津冀”周边地区高端制造产业集群提供优质高端特种钢原材料,也是推进“京津冀”周边地区能源、经济、环境协同发展的重要举措。山西省煤–焦–氢–铁产业链发展主要分为以下三个阶段。
在示范项目建设阶段,晋城市优先布局非常规天然气制氢耦合DRI示范项目,运城市优先布局可再生能源多能耦合制氢DRI项目;
依托左权县焦炉煤气制氢耦合DRI示范项目的发展经验,太原市、临汾市、吕梁市优先推广焦炉煤气制氢耦合DRI示范项目;朔州市、长治市开展低阶煤改性结焦气化一体化富氢燃料气耦合DRI储备示范项目。
非常规天然气制氢耦合DRI、可再生能源多能耦合制氢DRI、低阶煤改性结焦气化一体化富氢燃料气耦合DRI等技术路径在2025年前进入项目中试、初期示范试验阶段,2030年前各建成示范项目。
在快速发展阶段,到2035年,初步形成以朔州市为核心的晋北地区储备基地,以太原市、长治市、运城市为核心区域的产业集聚区,煤–焦–氢–铁三角发展布局初具规模;
在山西省钢铁企业中建设一批有特色、有市场的煤–焦–氢–铁产业链项目;山西省煤–焦–氢–铁产业规模(DRI产量)超过1×107t,成为京津冀晋区域最大的煤–焦–氢–铁产业发展区。
到2050年,“太–长–运”煤–焦–氢–铁产业集群规模(DRI产量)达到2.5×107t,成为国内规模第一。
在稳定巩固期,到2060年,灰氢炼钢基本退出,绿氢炼钢蓬勃开展;“太–长–运”煤–焦–氢–铁三角产业集群规模保持稳定,产业发展质量显著提升,代表我国行业发展水平。
我国煤–焦–氢–铁产业链发展建议
(一)树立清洁低碳发展理念,以理念创新驱动能源革命
完整、准确、全面地贯彻落实新发展理念,对标碳达峰、碳中和目标开展能源革命和生态文明建设。
结合煤–焦–氢–铁产业链不同技术路径的能源资源转化特点,统筹能源生产消费革命、能源科技革命、产业结构调整、战略性低碳清洁产业的战略发展目标;
将煤炭清洁高效利用、化解焦化行业过剩产能、氢能产业发展规划、钢铁行业减量/调整/升级作为推动能源革命的重点内容,力求实现煤–焦–氢–铁产业链的清洁高效绿色低碳发展并与国家能源转型战略相衔接,全方位保障生态文明建设。
(二)推进能源转型发展,将能源资源优势转化为发展优势
准确把握清洁低碳的能源发展态势,制定煤–焦–氢–铁产业链涉及领域的能源转型战略,更好落实煤–焦–氢–铁产业链发展战略。
发挥煤–焦–氢–铁产业链在连通传统产业和新兴产业、融合传统产业与新兴产业方面的纽带作用,促进新旧动能转换。
作为产业链上游的煤、焦将逐渐减产并弱化,其角色逐步由供氢载体向辅助、储备过渡;煤–焦–氢–铁产业链应保持必要的动态调整,着眼长远制定灰氢应用的过渡与退出机制。
合理延伸煤–焦–氢–铁产业链条,有效联合并协同推进能源生产与消费革命涉及的诸多产业,积极融合碳基/碳合成材料、高端铸造等产业方向,提高产业附加值以建立发展优势。
将氢、铁作为产业核心,煤、焦作为产业助推器,推动焦炉煤气制氢耦合DRI等焦炉煤气综合利用,避免出现为发展煤–焦–氢–铁而增加焦化产能的现象。
(三)注重顶层设计,制定产业集群整体发展规划
建议加强顶层设计,协调山西、河北、山东等重点省份的煤–焦–氢–铁产业链集群建设工作,论证出台“我国煤–焦–氢–铁产业集群开发总体规划”。
突破行政区域和关联行业的界限壁垒,科学分工并合理安排煤–焦–氢–铁产业链的上下游产品布局,消除重复建设、盲目投资、恶性竞争、产能过剩,实现区域资源互补,拓展经济社会发展新局面。
综合考虑地理区位、生产要素、产业关联等因素,因地制宜推广多元化的煤–焦–氢–铁产业链技术,完善产业集群规划;以钢铁产业调整为目标,以产业整合协同为抓手,以技术创新为关键,合理确定产业结构并配置产能,不走“先建设、后调整”的老路。
(四)完善政策、科技、人才要素,支撑产业高质量发展
加强政策引导与支持,科学构建我国煤–焦–氢–铁产业链发展政策体系。在示范项目审批、立项、运营等方面,给予必要的政策支持,落实规范的审批程序,营造优良的新型产业政策环境,形成政府引导、企业为主、社会参与的煤–焦–氢–铁产业多元化格局。
针对高校、科研院所、企业的用人特点,优化人才培育机制,合理设置煤–焦–氢–铁产业链研究课题;在国家级科技计划(专项)层面积极部署,攻克基础理论、关键共性技术,尤其是“卡脖子”技术与装备,抢占技术制高点并培养优秀人才和创新团队。
以企业为主要平台,培养煤–焦–氢–铁产业亟需兼具工程和管理经验的复合型人才,同步开展煤–焦–氢–铁产业链关键技术领域高端人才引进工作。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,3月13日,成都市人民政府发布《2025年成都市政府工作报告》全文。通过工作报告获悉,2024年,成都市在新兴产业加速培育工作中,新推广氢能商用车480辆,全国首列氢能源市域列车达速试跑,氢能产业“制—储—运—加—用”完整产业链条基本形成。2025年,将继续推进壮大先进制造业集群
北极星氢能网获悉,3月13日,据外媒报道,CharboneHydrogenCorporation与ABB达成合作,计划在北美开发多达15座绿氢工厂,首个项目将落地加拿大魁北克。根据双方签署的谅解备忘录(MOU),这两家能源公司将在未来五年内共同推进这些项目。作为示范项目,位于Sorel-Tracy的旗舰设施预计将于2025年第二季
据中国石油网消息,截至3月10日,独山子石化绿色低碳示范工程项目——塔里木120万吨/年乙烯项目二期的全厂地上管网完成率88%,混凝土浇筑完成率71%。这个项目利用副产氢气生产合成氨,对推动工业领域氢能应用具有良好的示范作用。近年来,独山子石化公司加快推进加氢裂化、加氢精制等环节利用清洁低碳
2024年12月,工业和信息化部等三部委发布《加快工业领域清洁低碳氢应用实施方案》。这是继2022年《氢能产业发展中长期规划(2021—2035年)》出台后的又一重磅推动氢能产业发展的国家政策文件,将为氢能产业高质量发展注入强大动力。炼化行业是氢能生产和消纳的重要领域,绿色低碳转型需要大量的清洁低
北极星氢能网获悉,3月13日外媒报道,欧洲能源公司(EuropeanEnergy)在丹麦南部卡索项目首次成功生产出绿氢制甲醇,该项目预计在未来几周内完成调试后,将成为全球最大的商业化绿甲醇工厂,并同时跻身欧洲最大的绿氢工厂之列。在卡索工厂,这批“粗制”未精制合成甲醇(e-methanol)是通过甲醇循环反
北极星氢能网获悉,近日,俊瑞绿氢能源(内蒙古)有限公司(以下简称“俊瑞内蒙古”)与内蒙古东源科技集团有限公司(以下简称“东源科技集团”)正式签署了绿氢购销意向书,标志着双方在绿色能源领域的合作迈出了重要一步。根据意向书,俊瑞内蒙古将投资建设大规模一体化项目,通过可再生能源制取绿氢
绿电和绿色燃料结合已成为大势所趋。风光氢氨醇一体化,能否为制约新能源电力消纳问题找到一条可行的发展路径呢?(来源:能源新媒作者:孙一凡)南美洲地区南部的巴塔哥尼亚地区是新能源开发者心中的“风水宝地”——这一地区风力充沛,风能利用系数超过50%,年均可提供多达6000小时的满负荷绿电发电时
北极星氢能网获悉,3月11日,重庆市巴南区人民政府发布了《重庆市巴南区空气质量持续改善行动实施方案》的通知。该通知明确指出,将在社区层面积极推动氢能的应用,具体涉及燃料电池车辆、综合发电系统、备用电源以及热电联供系统等领域,作为传统能源的替代。同时,通知还强调了绿氢的推广使用,特别
北极星氢能网获悉,据外媒3月11日报道,英国电解槽企业超临界解决方案有限公司(SupercriticalSolutions,Ltd.,简称“Supercritical”)成功获得1400万英镑(约合1740万美元)的A轮融资,由壳牌(Shell)和丰田(Toyota)领投,英美资源集团(AngloAmerican)、BlackFinch等跟投。据悉,本轮融资将用
北极星氢能网获悉,新疆俊瑞疏附县新能源规模化制绿氢项目全过程工程咨询已由项目审批/核准/备案机关批准,项目资金来源为国有资金125689万元,招标人为新疆俊瑞瑄昂能源科技有限公司。该项目规模为年产1.44万吨绿氢。总规划面积为199998平方米,总建筑面积87998平方米,建(构)筑物基地面积64400平方
北极星碳管家网获悉,日本HighChem株式会社与中国气候科技企业碳能科技(北京)有限公司于近日宣布,双方以共同开发并推广二氧化碳(CO)高效利用技术为目标,正式成立合资公司“高能科技(HighEnergy)”(总部位于东京都港区)。该合资公司将聚焦以下领域:1.CO电解制合成气技术:以CO和HO为原料,通
北极星氢能网获悉,3月11日,据内蒙古自治区投资项目在线审批办事大厅消息,内蒙古宝丰风光制氢项目一期电解水制氢工程完成备案。项目单位是内蒙古宝丰煤基新材料有限公司,项目位于内蒙古鄂尔多斯市乌审旗苏里格经济开发区图克项目区,总投资18.3574亿元,计划2025年4月开工,2027年3月竣工。项目年制
北极星氢能网获悉,近日,总投资1500万元,占地2400平方米的常发新能源氢能存储及制备技术中试基地项目开工仪式,在高新区SEPP中欧跨采先进制造产业园举行。常发新能源2021年落户高新区,致力于光解水制氢技术的研发。作为一家以科技创新为核心驱动力的企业,常发新能源始终坚持以突破关键核心技术为目
作为智慧能源解决方案领域的先行者,天合光能已率先从光伏产品制造商向光储智慧能源解决方案提供商转型。秉持“以客户为中心,以场景为导向”的理念,通过深度挖掘分布式能源、集中式电站及新场景需求,构建覆盖光储及场景融合、智能微网、虚拟电厂、零碳园区、绿色算力、绿电制氢氨醇等多元场景的解决
近日,在潍坊诸城市奥扬高压四型储氢瓶项目建设现场,呈现一派繁忙的景象。工人们正紧锣密鼓地进行厂房建设收尾工作,各类生产设备的安装工作也在有序展开。这个项目的快速推进,是诸城市推动新能源产业蓬勃发展的一个缩影。“高压四型储氢瓶项目计划投资3.41亿元,主要建设一座1.7万平方米的综合厂房
据中国石油网消息,截至3月10日,独山子石化绿色低碳示范工程项目——塔里木120万吨/年乙烯项目二期的全厂地上管网完成率88%,混凝土浇筑完成率71%。这个项目利用副产氢气生产合成氨,对推动工业领域氢能应用具有良好的示范作用。近年来,独山子石化公司加快推进加氢裂化、加氢精制等环节利用清洁低碳
2024年12月,工业和信息化部等三部委发布《加快工业领域清洁低碳氢应用实施方案》。这是继2022年《氢能产业发展中长期规划(2021—2035年)》出台后的又一重磅推动氢能产业发展的国家政策文件,将为氢能产业高质量发展注入强大动力。炼化行业是氢能生产和消纳的重要领域,绿色低碳转型需要大量的清洁低
北极星氢能网获悉,近日,国内单体容量最大的光伏适应性电解制氢系统,在中国华能张掖绿电制氢示范站顺利满负荷产氢,并完成TV南德第三方见证测试。这标志着中国华能在氢储能助力新能源大规模消纳应用领域取得又一重要进步,对增强新型电力系统的灵活调节能力具有重要意义。该项目由中国华能甘肃新能源
北极星氢能网获悉,近日,俊瑞绿氢能源(内蒙古)有限公司(以下简称“俊瑞内蒙古”)与内蒙古东源科技集团有限公司(以下简称“东源科技集团”)正式签署了绿氢购销意向书,标志着双方在绿色能源领域的合作迈出了重要一步。根据意向书,俊瑞内蒙古将投资建设大规模一体化项目,通过可再生能源制取绿氢
近日,国内单体容量最大的光伏适应性电解制氢系统在华能张掖绿电制氢示范站顺利满负荷产氢,并完成TV南德第三方见证测试。该项目由华能甘肃新能源公司投资建设,位于甘肃省张掖市经济开发区循环经济示范园,配套建设8兆瓦光伏电站,制备的高纯氢气由高压管束车外运,在站内实现“光伏发电-制氢-充装”
北极星氢能网获悉,三星EA(SamsungEA)与全球知名的电解槽制造商Nel达成重大合作协议。根据协议,三星EA将成为Nel的最大股东,并与其建立工程、采购、施工(EPC)合作伙伴关系,共同推广和销售完整的氢能工厂解决方案。基于EPC合作协议,三星EA将利用Nel的碱性电解槽、质子交换膜(PEM)电解槽以及电
北极星氢能网获悉,3月12日,国家电力投资集团有限公司二〇二五年度第20批集中招标(江西核电棉船风电配套制氢储能项目PEM电解水制氢设备)已具备招标条件,现进行公开招标。招标人为国家电力投资集团有限公司,招标代理机构为中国电能成套设备有限公司。该项目位于江西省九江市彭泽县,为江西省彭泽县
近日,中国化学天辰公司总承包的北方华锦精细化工及原料工程煤制氢装置项目首台气化炉顺利吊装就位。这一重大里程碑节点的完成,不仅标志着项目将全面进入安装高峰阶段,也为推进项目后续建设奠定了良好基础。作为项目核心设备之一,该气化炉采用华理四喷嘴3000t/d水煤浆气化技术,设备总重量和吊装高
8月9日,中国(绵阳)科技城工业技术研究院举行线上发布会,推出了由中国工程物理研究院应用电子学研究研发的“微波煤制氢技术”。随着全球气候问题日益严峻,氢能作为清洁、高效、可再生的新型能源,正受到越来越多的关注。我国《氢能产业发展中长期规划(2021—2035年)》的发布,标志着氢能发展正式
2024年7月19~21日,辽宁盘锦市华锦阿美精细化工及原料工程项目完成空分装置首批大型设备进场及安装工作,标志着项目建设进入设备安装阶段。空分装置长周期设备从2023年7月开始制作,经过一年的制作周期,空冷塔、水冷塔、两台分子筛纯化器共四台大型设备首批进场安装,各设备直径约5米、高度约30米,单
北极星氢能网获悉,5月29日,国务院印发《2024—2025年节能降碳行动方案》。《方案》提出,有序建设大型水电基地,积极安全有序发展核电,因地制宜发展生物质能,统筹推进氢能发展。到2025年底,全国非化石能源发电量占比达到39%左右。加强氢冶金等低碳冶炼技术示范应用。推进石化化工工艺流程再造。加
北极星氢能网获悉,5月21日,国家管网集团北京管道有限公司发布北京管道陕京线地区低阶煤气化制氢方案招标。要求对陕京管道沿线煤炭资源与煤质调研、当前主流的煤气化制氢技术对比,沿线典型煤种气化反应性及其灰熔融特性评价,大宗煤气化催化剂的实验筛选与评价,大规模煤气化制氢技术指标及其管道掺
北极星氢能网获悉,5月13日,陕煤电力石门有限公司发布制氢设备招标,据悉该项目为陕煤石门2×66万千瓦扩能升级改造项目,位于湖南省常德市石门县新关镇的新关社区,部分位于石门县城楚江街道的阎家溶村。本次招标范围为两台机组所配套的完整的制氢系统所有设备,其中制氢机采用整机进口设备,含整流柜
北极星氢能网获悉,2024年4月2日,贵州省工业和信息化厅发布了关于印发《关于加快发展先进制造业集群的指导意见》的通知。其中氢能相关的内容包括:二、培育重点及主攻方向(一)巩固提升传统产业集群2.磷煤化工集群。——煤化工。加快推动传统煤化工产业实施绿色化改造,大力发展基础煤化工深加工产品,提
北极星氢能网获悉,1月1日,陕西榆林市榆阳区人民政府与陕西中核交大超洁能源技术有限公司、中核华辰建筑工程有限公司签订了《煤炭超临界水气化制氢发电多联产项目》三方投资协议。据悉,“煤炭超临界水气化制氢发电多联产技术”俗称“超临界水蒸煤技术”,是西安交大郭烈锦院士带领科研团队经过20年攻
北极星氢能网获悉,近日,山西鹏飞集团有限公司董事局主席兼总裁郑鹏接受记者的采访。记者:氢能作为清洁能源,鹏飞集团是如何构建完整的氢能产业链,实现上下游产业的协同发展?郑鹏:近年来,为助力实现“双碳”目标,鹏飞集团依托山西发展氢能的资源优势、成本优势、应用场景优势,结合集团自身产业
北极星氢能网获悉,12月18日,贵州美锦“煤—焦—氢”综合利用示范项目举行点火烘炉仪式。该项目2022年7月在六枝特区路喜园区成立,总投资约100亿元,规划用地1800余亩。该项目依托贵州丰富的煤炭资源,通过绿色精深加工和高效清洁利用进行低碳、减碳发展,项目采用国际最先进大型焦炉清洁生产工艺,最
10月16日,贵州省六盘水市六枝特区煤焦氢产业链项目签约仪式举行。近年来,六枝特区围绕服务新型工业化,坚持项目为王,大抓项目,抓大项目,促成了贵州美锦煤焦氢综合利用示范项目、磷酸铁锂等重大项目顺利落地。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!