登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
钢铁行业是化石能源消耗密集型行业,相关温室气体排放约占世界总排放量的7%;全球近75%的钢铁生产采用高炉(炼铁)、转炉(炼钢)工艺,生产过程会向环境排放大量的CO2、硫化物、氮氧化物、污水等。
因此,世界各国都在积极寻求低能耗、低排放、高效率的炼铁炼钢工艺。
直接还原铁(DRI)工艺具有低硫、低磷、密度大、热能高、尺寸规则等特点,生产环境友好,符合清洁化生产的需要;与高炉–转炉工艺相比,采用气基DRI–电炉炼钢工艺后,生产每吨钢可减排CO2约0.83t。
我国煤炭、焦化、钢铁等行业的长远发展,必然面临资源、环境、生态等的约束,特别是随着碳达峰、碳中和目标的提出,钢铁行业很难维持当前高炉–转炉炼钢工艺的市场存量规模。
DRI工艺是我国钢铁行业转型发展的重要方向,应加速发展DRI–电炉短流程炼钢。
DRI一般以精铁矿为原料,采用富氢还原性气体作为还原剂进行生产,在俄罗斯、伊朗、委内瑞拉等天然气丰富的国家生产成本很低,具有明显优势。
在我国,基于“富煤、贫气、少油”的资源禀赋特征,选择以煤基气源代替天然气作为DRI的还原剂,可改善钢铁行业的能源供给结构,摆脱对炼焦煤资源短缺的羁绊,实现短流程或紧凑流程(废钢–电炉炼钢流程)炼钢,由此促进钢铁工业清洁化生产及可持续发展。
废钢质量的持续降低是制约电炉炼钢发展的主要因素,而DRI生产的钢铁杂质少,使用后产生的废钢品质高,将是电炉冶炼纯净钢的必备铁源,如相关原料一般是50%~70%的废钢配加30%~50%的DRI。
2019年,我国粗钢产量为9.96×108t,约占世界总产量的53.12%;作为短流程或紧凑流程炼钢的主要原料,DRI产量仅为1×106t,约占世界总产量的0.9%。这表明,我国发展DRI势在必行。
本文系统梳理国内外DRI技术与产业的发展现状,剖析我国煤–焦–氢–铁产业链涉及的关键技术路径与发展潜力;
同时,以资源大省山西为例,分析煤–焦–氢–铁产业链发展的技术路径选择,进而针对性提出我国煤–焦–氢–铁产业高质量发展的对策建议,以期为我国乃至其他国家的煤炭、焦化、钢铁行业发展提供基础性参考。
煤–焦–氢–铁产业链发展技术路径对比分析
氢气按照制氢来源不同分为蓝氢(化石能源制氢)、灰氢(工业副产品制氢)、绿氢(可再生能源制氢)。
考虑富氢气源的差异,结合我国能源供给与消费结构、资源禀赋、煤/焦/氢/铁产业基础,煤–焦–氢–铁产业链的技术路径主要有5条:
煤直接气化制氢耦合还原铁;
焦炉煤气制氢耦合还原铁;
多能协同互补制氢耦合还原铁;
非常规天然气制氢耦合还原铁;
低阶煤改性结焦气化一体化富氢燃料气耦合还原铁。
(一)不同关键技术路径的特性分析
1.煤直接气化制氢耦合还原铁
煤气化是煤炭清洁高效利用的主要技术方向,煤气化制氢也是当前我国最主要的制氢方式,煤气化生产的氢气可作为竖炉炼铁的还原剂。
煤直接气化制氢耦合还原铁工艺流程一般包括煤气化、煤气净化、CO变换、氢气提纯、竖炉炼铁(DRI)等生产环节(见图2)。
图2:煤直接气化制氢耦合还原铁工艺路线图
我国发展此类技术路径具有资源禀赋优势,工艺成熟、成本较低,但对环境影响较大,存在严重的碳排放问题。
2.焦炉煤气制氢耦合还原铁
焦炉煤气是焦炉干馏煤时产生的挥发性气体,主要成分是氢气(体积百分比为55%~60%)和甲烷(体积百分比为23%~25%);从焦炉煤气中提取氢气,作为还原气体进入竖炉来还原铁矿石。
焦炉煤气制氢耦合还原铁工艺流程一般包括焦炉煤气净化、氢气提纯、竖炉炼铁(DRI)等(见图3)。
图3:焦炉煤气制氢耦合还原铁工艺路线图
此类技术路径可充分利用焦化行业副产的焦炉煤气富氢资源优势,为焦炉煤气高值化利用提供了新思路;制氢工艺流程简单,成熟度高。
在短中期,焦炉煤气与DRI的协同生产,能够有效提高能源整体利用效率并减少碳排放;但对照长远期的碳中和目标来看,焦炉煤气仍存在碳排放问题,焦化产能将逐步削减,使得焦炉煤气–灰氢DRI路径逐步过渡到可再生能源–绿氢DRI路径。
3.多能协同互补制氢耦合还原铁
多能协同互补制氢指通过多种能源之间的相互匹配、梯级利用以高效低碳地生产氢能;氢气作为还原气体进入竖炉来还原铁矿石(见图4)。
图4 多能协同互补制氢耦合还原铁工艺路线图
可再生能源的不稳定性、电力输配限制造成“弃能”现象,通过耦合来源稳定、低成本的灰氢或蓝氢,实现“弃能”的就地转换利用,形成低碳、高效、稳定、低成本的氢源供给。
此类技术路径是未来低碳绿色制氢的主要途径,可有效降低碳排放强度,发展潜力大;但存在地区性多种能源资源的空间分布不匹配现象,储能、多能耦合集成技术尚不成熟,需持续开展技术攻关并实施工程示范。
4.非常规天然气制氢耦合还原铁
非常规天然气资源主要有煤层气、页岩气、砂岩气。相应技术路径细分为两种——
非常规天然气经钼基催化制氢气及苯等副产品,氢气经过净化等过程后直接进入竖炉,生产还原铁;
经水蒸气重整转化、变压吸附等过程得到氢气,然后进入竖炉生产还原铁(见图5)。
图5:非常规天然气制氢耦合还原铁工艺路线图
在我国,煤炭开采过程中伴生了大量的非常规天然气,低浓度瓦斯气体的分离提浓技术是非常规天然气利用的重要前提,但能耗高、成本高。
尽管此类技术路径有助于减少温室气体排放,但非常规天然气属于碳基能源,在碳中和目标的约束下,需要考虑非常规天然气能源利用行业的整体布局优化。
5.低阶煤改性结焦气化一体化富氢燃料气耦合还原铁
低阶煤用于发电,效率低、污染物排放大。开发低阶煤改性结焦气化一体化技术,是满足冶金、机械、化工等行业的焦炭需求,减轻环境污染的有效途径。
此类技术路径是对低阶煤改性结焦的延伸(见图6):
将低阶煤洗选获得精煤,将不粘结的部分精煤与粘结性的煤进行配煤改性,制备具有一定粘结性的改性煤;
与原精煤进行配煤高温热解,生成改性热解炭与挥发性气体;
改性热解炭经气化后产生的气化煤气与富氢的挥发性气体耦合形成富氢气体,进入气基竖炉中还原铁矿石;另一部分气化煤气用于发电或经水煤气变换制氢还原铁。
图6:低阶煤改性结焦气化一体化富氢燃料气耦合还原铁工艺路线图
我国低阶煤炭资源较为丰富,采用相关技术可减少高品质煤炭资源消耗、缓解优质炼焦煤短缺现象,但是碳排放系数依然较高。
目前,此类技术路径处于技术研发到工程示范的过渡阶段,待技术成熟后将快速推动焦化–钢铁行业的融合发展。
(二)煤–焦–氢–铁产业链技术路径性能对比分析
在制氢还原铁的整个生产过程中,铁矿石价格是影响生产成本最大的因素;以上5种技术路径的最大区别在于制氢方式的差异。
①从能耗水平看,多能协同互补制氢的原料基本来源于风、光、生物质等可再生能源,采用电解水或生物质热解/气化等方式制取氢气,能耗(16.2~19.8MJ/kgH2)为几种路径中的最低值;
焦炉煤气制氢生产流程简单,能耗(34.3~139.7MJ/kgH2)略高于多能协同互补制氢;煤气化制氢的能耗(200~240MJ/kgH2)水平最高。
②从经济性看,原料费用或当地基础能源价格决定了化石能源制氢/电解制氢等工艺的氢气生产成本;焦炉煤气制氢的成本(0.3~1.5元/m3)最低;多能协同互补制氢的成本(0.4~5.0元/m3)浮动较大,这是由可再生能源制氢的不稳定性导致的。
③从温室气体减排的角度看,多能协同制氢的碳排放量(1.2~2.0kgCO2eq/kgH2)最小,焦炉煤气制氢(11.68~15.8kgCO2eq/kgH2)、非常规天然气制氢(8.9~12.9kgCO2eq/kgH2)次之,煤气化制氢(18.8~29.0kgCO2eq/kgH2)最大。
表2给出了5种煤–焦–氢–铁产业链技术路径的特性分析。
表2:不同制氢技术耦合直接还原铁技术路径的特性分析
在近期,鉴于我国能源转型发展的迫切性,不推荐采用煤气化制氢还原铁技术,建议推广技术成熟、经济性良好的焦炉煤气方案;
非常规天然气制氢还原铁适宜在资源聚集区局部推广,以低品质的非常规天然气利用为主;低阶煤改性结焦气化一体化富氢燃料气还原铁的优缺点均较突出,可作为重要储备技术开展研究与示范。
着眼长远,焦炉煤气制氢量受限于焦煤/焦炭的产能,必然面临原料产能的瓶颈问题;多能协同互补制氢耦合还原铁的环境友好特性突出,在实现技术突破后有望后来居上成为供氢还原铁的主要来源(见表 3)。
表3:不同制氢技术耦合直接还原铁技术发展潜力与战略选择
按照生产吨钢需要消耗0.4tDRI计算,对应消耗240N·m3(21.36kg)氢气;结合电炉炼钢工艺过程,对不同制氢技术耦合DRI–电炉生产钢铁的综合性能(能耗、碳排放、经济性)进行评价(见表4)。
表4:高炉–转炉技术与电炉炼钢技术综合性能对比分析
从能耗角度看,转炉炼钢的能耗普遍高于DRI电炉炼钢;从碳排放角度看,转炉炼钢碳排放高于DRI电炉炼钢;从成本角度看,DRI电炉炼钢的成本高于转炉炼钢。整体而言,DRI电炉炼钢更具优势。
煤–焦–氢–铁产业链发展技术路径案例分析
山西省是全国首个能源革命综合改革试点地区,资源禀赋和产业基础具备发展煤–焦–氢–铁产业的巨大潜力。
煤炭、焦化、钢铁三大传统产业与氢能这一新兴能源类型的深度结合,将积极驱动山西省绿色低碳转型,同时为我国资源型地区高质量发展提供路径借鉴。
(一)山西省能源资源禀赋与产业发展可行性
山西省制氢气源丰富(见表5),可利用的焦炉煤气约为1.94×1010N·m3,主要分布在晋南的吕梁市、临汾市、运城市、太原市、晋中市、长治市等地;
表5:山西省焦炉煤气、煤成气、可再生能源装机量(2019年)
晋北的大同市、朔州市、忻州市,晋南的运城市等地,风电、水电、光电储能优势明显;全省煤成气资源总量约为8.31×1012m3(占全国的27.7%),晋城市、临汾市、忻州市等地资源丰富。
按照生产1tDRI消耗618N·m3焦炉煤气来估算,山西省焦炉煤气可生产DRI3.138×107t/a。
可再生电力(运行时间为6000h/a)用于电解水制氢,每生产1N·m3的氢气需消耗3.5~5kW·h电力,每生产1tDRI最低需消耗600N·m3氢气,由此估算山西省可再生能源可生产DRI5.124×107t/a。
每生产1tDRI需消耗320N·m3的煤成气(95%CH4),由此估算山西省可用于DRI生产的煤成气产量为4×109m3,即DRI生产潜力约为1.25×107t/a。
2019年,山西省粗钢总产量为6.028×107t,产能利用率为81.7%,集中于晋中、晋南片区(见表6),其中运城市、太原市、临汾市产量超过1×107t,晋中市、吕梁市、晋城市、长治市产量约为3×106~6×106t。
表6:山西省粗钢产量及各类DRI生产潜力测算
山西省焦炭产量为9.696×107t,其中吕梁市产量为2.575×107t,临汾市、长治市、晋中市、运城市产量超过1×107t。
焦炉煤气的产量与焦炭产量成正比,目前山西省的焦炉煤气主要用于制甲醇,但甲醇市场存在产能过剩情况;富余的焦炉煤气用于制氢,在缓解产能过剩问题的同时,可拓宽焦炉煤气资源化利用的途径。
基于山西省能源发展规划,在短期内焦炉煤气可生产氢气用于DRI,未来可用于发展氢能。
山西省焦炉煤气制氢耦合DRI生产与钢铁企业空间布局最为匹配,集中在晋中、晋南地区;煤成气耦合DRI生产与钢铁企业空间布局基本吻合。
可再生能源制氢耦合DRI生产与钢铁企业呈逆分布,未来的规模化利用需构建氢气运输网络、匹配钢铁企业现有格局。
按电炉生产吨钢消耗40%DRI(一般为50%~70%废钢、30%~50%DRI[7])估算,焦炉煤气制氢耦合DRI技术路径可生产粗钢总量为7.845×107t,基本满足现阶段山西省对DRI的需求(粗钢产能规划为7.38×107t)。
煤成气制氢耦合DRI技术路径可生产粗钢总量为3.334×107t,在临汾市、晋城市等焦炉煤气资源相对不足的地区作为补充路径。可再生能源制氢气耦合DRI可生产粗钢总量为1281×108t。
因此,在短期内焦炉煤气制氢耦合DRI技术路径是山西省发展煤–焦–氢–铁产业链的适宜选择,在中长期可采用可再生能源制氢生产DRI。
(二)山西省产业技术路径选择
山西省各市不同路径的制氢潜能见图7。
图7:山西省可再生能源分布情况
晋北地区(大同市、朔州市、忻州市)可再生能源制氢潜能较好,可再生能源以光电、风电为主;晋中南地区(晋城市、临汾市、长治市等)氢能潜力以煤成气制氢为主;晋中南地区(吕梁市、晋中市、临汾市、长治市、运城市)的焦炉煤气制氢潜力较大。
在全国冶金行业绿色低碳发展、钢铁行业控制化石能源消耗的背景下,因煤气化制氢的能耗与碳排放较大,不推荐煤气化制氢耦合DRI作为主要生产路径。
山西省非常规天然气资源丰富,相应分布与钢铁产业分布基本吻合,加之非常规天然气制氢路线的经济性、能耗、碳排放优于煤气化制氢,因此非常规天然气制氢耦合DRI是山西省近期可用的推广方案。
山西省焦化产能高达9×107t,焦炉煤气产量丰富,与钢铁产能布局基本吻合,因此焦炉煤气制氢耦合DRI路径可有效解决焦炉煤气低值利用问题,是山西省近期DRI生产的主要方式。
山西省可再生能源装机量具有明显优势,但与钢铁产能分布不匹配,在成本、储氢、运氢等方面存在技术瓶颈,开展大规模应用尚有距离。
低阶煤改性结焦气化一体化技术富氢燃料耦合DRI技术路径,将焦化行业和钢铁行业进行科学串联,可在解决炼焦煤资源短缺的同时实现焦化企业转型发展,达到整体性的节能减排效果,在山西省部分地区或企业中宜率先推广和示范应用。
(三)山西省产业发展目标与布局
1.发展目标
对标碳达峰、碳中和目标,山西省能源结构转型和产业升级亟需加速推进。煤–焦–氢–铁产业链能够促进山西省煤炭、焦化、钢铁三大传统产业,氢能这一新兴能源产业进行深度融合,高效带动山西省战略新兴产业协同发展、绿色低碳转型。
近期(2021—2035年)以灰氢炼钢为主。
在焦化集聚区、钢焦联合企业或园区,积极推广焦炉煤气制氢DRI;
在非焦化集聚区(如晋北地区),优先推广化石能源耦合可再生能源多能互补制氢DRI;其他区域稳步推广非常规天然气制氢DRI。
立足钢焦联合的产业发展趋势,近期以钢焦联合园区焦炉煤气制氢DRI为主,蓝氢耦合绿氢炼钢逐步实施项目示范。
中期(2035—2050年)以灰氢向绿氢炼钢过渡为主。
随着能源结构转型的深入,山西省焦炭产量逐渐降低,而可再生能源发电比重不断增加,煤–焦–氢–铁产业将形成以化石能源耦合可再生能源多能互补制氢DRI、非常规天然气制氢耦合DRI为主的产业格局。
其中,晋北地区以化石能源耦合可再生能源多能互补制氢DRI为主,晋南地区以非常规天然气制氢DRI、焦炉煤气DRI并存的格局为主,逐步实现灰氢炼钢向绿氢炼钢转换。
远期(2050年以后)以绿氢炼钢为主。
山西省加速发展灰氢、蓝氢(非常规天然气)炼钢向绿氢炼钢转换,到2060年,煤–焦–氢–铁路径将以可再生能源为主,以带有CCUS的非常规天然气制氢技术为辅,形成以绿氢为主的煤–焦–氢–铁产业链格局。
2.产业布局
山西省煤–焦–氢–铁产业链布局建议如下:以朔州市为核心区域的晋北地区战略储备基地,以太原市、长治市、运城市为核心区域的产业集聚区;推进“太–长–运”三角发展布局,打造“1+3”顶层发展格局。
①晋北地区以化石能源耦合可再生能源多能互补制氢DRI为主,以低阶煤改性结焦气化一体化富氢燃料气DRI为辅,开展低阶煤改性结焦气化一体化富氢燃料气DRI项目示范,提高先进技术和设备应用水平。
②在焦化集聚区、钢焦联合企业或园区,推广焦炉煤气制氢DRI。
③在瓦斯抽采利用园区及长治市、晋城市、临汾市、运城市,推广非常规天然气制氢DRI,优先探索煤矿瓦斯DRI。
④晋北三市(忻州、朔州、大同)和阳泉市的钢铁企业较少,可根据当地产业优势开展先进技术研发示范与储备,而不作为煤–焦–氢–铁产业布局的主要区域。
“京津冀”周边地区协同发展的重要内容即建设世界级的清洁高效绿色低碳高端制造产业集群,高端制造是钢铁行业转型升级的核心驱动力。
山西省煤–焦–氢–铁产业链发展,将为“京津冀”周边地区高端制造产业集群提供优质高端特种钢原材料,也是推进“京津冀”周边地区能源、经济、环境协同发展的重要举措。山西省煤–焦–氢–铁产业链发展主要分为以下三个阶段。
在示范项目建设阶段,晋城市优先布局非常规天然气制氢耦合DRI示范项目,运城市优先布局可再生能源多能耦合制氢DRI项目;
依托左权县焦炉煤气制氢耦合DRI示范项目的发展经验,太原市、临汾市、吕梁市优先推广焦炉煤气制氢耦合DRI示范项目;朔州市、长治市开展低阶煤改性结焦气化一体化富氢燃料气耦合DRI储备示范项目。
非常规天然气制氢耦合DRI、可再生能源多能耦合制氢DRI、低阶煤改性结焦气化一体化富氢燃料气耦合DRI等技术路径在2025年前进入项目中试、初期示范试验阶段,2030年前各建成示范项目。
在快速发展阶段,到2035年,初步形成以朔州市为核心的晋北地区储备基地,以太原市、长治市、运城市为核心区域的产业集聚区,煤–焦–氢–铁三角发展布局初具规模;
在山西省钢铁企业中建设一批有特色、有市场的煤–焦–氢–铁产业链项目;山西省煤–焦–氢–铁产业规模(DRI产量)超过1×107t,成为京津冀晋区域最大的煤–焦–氢–铁产业发展区。
到2050年,“太–长–运”煤–焦–氢–铁产业集群规模(DRI产量)达到2.5×107t,成为国内规模第一。
在稳定巩固期,到2060年,灰氢炼钢基本退出,绿氢炼钢蓬勃开展;“太–长–运”煤–焦–氢–铁三角产业集群规模保持稳定,产业发展质量显著提升,代表我国行业发展水平。
我国煤–焦–氢–铁产业链发展建议
(一)树立清洁低碳发展理念,以理念创新驱动能源革命
完整、准确、全面地贯彻落实新发展理念,对标碳达峰、碳中和目标开展能源革命和生态文明建设。
结合煤–焦–氢–铁产业链不同技术路径的能源资源转化特点,统筹能源生产消费革命、能源科技革命、产业结构调整、战略性低碳清洁产业的战略发展目标;
将煤炭清洁高效利用、化解焦化行业过剩产能、氢能产业发展规划、钢铁行业减量/调整/升级作为推动能源革命的重点内容,力求实现煤–焦–氢–铁产业链的清洁高效绿色低碳发展并与国家能源转型战略相衔接,全方位保障生态文明建设。
(二)推进能源转型发展,将能源资源优势转化为发展优势
准确把握清洁低碳的能源发展态势,制定煤–焦–氢–铁产业链涉及领域的能源转型战略,更好落实煤–焦–氢–铁产业链发展战略。
发挥煤–焦–氢–铁产业链在连通传统产业和新兴产业、融合传统产业与新兴产业方面的纽带作用,促进新旧动能转换。
作为产业链上游的煤、焦将逐渐减产并弱化,其角色逐步由供氢载体向辅助、储备过渡;煤–焦–氢–铁产业链应保持必要的动态调整,着眼长远制定灰氢应用的过渡与退出机制。
合理延伸煤–焦–氢–铁产业链条,有效联合并协同推进能源生产与消费革命涉及的诸多产业,积极融合碳基/碳合成材料、高端铸造等产业方向,提高产业附加值以建立发展优势。
将氢、铁作为产业核心,煤、焦作为产业助推器,推动焦炉煤气制氢耦合DRI等焦炉煤气综合利用,避免出现为发展煤–焦–氢–铁而增加焦化产能的现象。
(三)注重顶层设计,制定产业集群整体发展规划
建议加强顶层设计,协调山西、河北、山东等重点省份的煤–焦–氢–铁产业链集群建设工作,论证出台“我国煤–焦–氢–铁产业集群开发总体规划”。
突破行政区域和关联行业的界限壁垒,科学分工并合理安排煤–焦–氢–铁产业链的上下游产品布局,消除重复建设、盲目投资、恶性竞争、产能过剩,实现区域资源互补,拓展经济社会发展新局面。
综合考虑地理区位、生产要素、产业关联等因素,因地制宜推广多元化的煤–焦–氢–铁产业链技术,完善产业集群规划;以钢铁产业调整为目标,以产业整合协同为抓手,以技术创新为关键,合理确定产业结构并配置产能,不走“先建设、后调整”的老路。
(四)完善政策、科技、人才要素,支撑产业高质量发展
加强政策引导与支持,科学构建我国煤–焦–氢–铁产业链发展政策体系。在示范项目审批、立项、运营等方面,给予必要的政策支持,落实规范的审批程序,营造优良的新型产业政策环境,形成政府引导、企业为主、社会参与的煤–焦–氢–铁产业多元化格局。
针对高校、科研院所、企业的用人特点,优化人才培育机制,合理设置煤–焦–氢–铁产业链研究课题;在国家级科技计划(专项)层面积极部署,攻克基础理论、关键共性技术,尤其是“卡脖子”技术与装备,抢占技术制高点并培养优秀人才和创新团队。
以企业为主要平台,培养煤–焦–氢–铁产业亟需兼具工程和管理经验的复合型人才,同步开展煤–焦–氢–铁产业链关键技术领域高端人才引进工作。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
日前,甘肃酒泉市自然资源局发布《关于公示广核新能源甘肃玉门光伏光热风电制氢示范项目40万千瓦风电工程用地选址的公告》,项目总装机规模为400MW,主要建设64台6.25MW的风力发电机组和64台机组变电站,详情如下:关于公示广核新能源甘肃玉门光伏光热风电制氢示范项目40万千瓦风电工程依据《中华人民
11月18日,张家口市风氢一体化源网荷储综合示范工程项目(一期)EPC招标中标公示。信息显示:第一中标排序人为中国电建集团昆明勘测设计研究院有限公司,投标报价为15.2亿;第二中标排序人为中国电建集团华东勘测设计研究院有限公司,投标报价为14.57亿;第三中标排序人为中国电建集团贵阳勘测设计研究
11月19日,可再生能源创新离网制绿氢实验及中试建设EPC总承包项目招标四次延期公告发布。招标文件的获取获取时间:2024年9月30日23:30至2024年11月19日23:30延期为2024年9月30日23:30至2024年11月27日23:30。在此之前,该项目分别于10月11日发布变更公告,10月22日、10月31日、11月12日发布了延期
企查查信息显示,11月11日,浙江华夏和利氢能科技有限公司成立。公司注册资本1亿元,经营范围:储能技术服务;新兴能源技术研发;技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;合同能源管理;站用加氢及储氢设施销售;在线能源监测技术研发;余热发电关键技术研发;太阳能热利用产品
11月12日,由上海氢晨新能源科技有限公司子公司上海氢盛创合能源科技有限公司(以下简称“氢盛能源”)自主研发制造的PEM电解水制氢撬装设备完成出厂前第三方测试见证发往国家能源集团海洋氢能关键技术研究示范项目海上平台,本次交付设备为全国首套海上PEM电解水制氢设备,具有重大科技与产业示范意义
由多家财团组成的可再生能源开发公司发布申请,希望能在西澳大利亚沿海沙漠土地上建设一个70GW装机容量的可再生能源发电和绿色氢能生产中心——西部绿色能源中心(WGEH,WesternGreenEnergyHub),旨在通过风、光制氢,打造一个具有全球竞争力的西澳大利亚氢能(绿氢/绿氨)出口中心。目前,该财团已向
11月13日,吉林省投资项目在线审批监管平台发布双辽市“风光绿色氢醇制航空煤油”一体化示范项目(化工部分)备案情況公示。信息显示,单位名称为吉林龙源新能源有限公司,项目总投资46.41亿,计划开工时间:2025年12月,计划竣工时间:2027年10月。主要建设规模和内容:项目厂址位于双辽市经济开发区
北极星氢能网获悉,11月11日,鹏飞氢美(宁城)新能源科技有限公司提交的鹏飞氢美(宁城)新能源公司262.5MW风力发电制0.8万吨/年绿氢及15万吨/年绿色甲醇一体化项目,符合产业政策和市场准入标准,准予备案。建设地点:赤峰市--宁城县--宁城县汐子工业园区总投资:182000万元,其中自有资金:36400万
北极星氢能网获悉,11月11日,新疆俊瑞轮台县新能源规模化制绿氢项目设计采购施工一体化总承包中标结果公示,中标人为中建七局新能(上海)建设有限公司。据招标信息显示,项目位于新疆巴音郭勒州轮台县,新建年产3万吨绿电制氢工厂,配套安装额定电解槽总量106000Nm#xB3;/h,电解水制氢单套2000Nm#xB3
北极星氢能网获悉,11月7日,国家能源集团发布哈密能源化工一阶段煤制油工程绿氢装置基础设计和技术服务项目招标公告。资料显示,该项目由国家能源集团新疆哈密能源化工有限公司独资建设,项目选址位于新疆维吾尔自治区哈密市巴里坤县,项目总投资1700亿元。一阶段煤制油工程总投资560亿元,主要建设内
11月6日,新疆俊瑞轮台县新能源规模化制绿氢项目设计采购施工一体化总承包中标候选人公示发布。新疆俊瑞轮台县新能源规模化制绿氢项目设计采购施工一体化总承包中标候选人分别为中建七局新能(上海)建设有限公司、贵州省公路工程集团有限公司、中交第三公路工程有限公司。招标信息显示:项目新建年产3
2024年11月20日,上海交通大学安泰经济与管理学院副院长、交大行业研究院副院长、交大深圳研究院执行院长田新民、交大化工学院常务副院长姜学松等领导一行五人莅临纳尔股份参加产学研合作签约仪式,董事长游爱国、投资顾问李子强、纳尔研究院院长丁力等一同出席。在双方的共同见证下,纳尔股份与上海交
北极星氢能网获悉,近日,经河北省唐山市气象局许可的大唐国际唐山光氢储和氢能综合应用一体化示范制氢加氢项目雷电防护装置竣工验收完成。这是唐山市气象局首次针对制氢加氢项目实施行政许可,开启氢能产业发展“全程护航”模式。唐山气象部门的行政服务人员和防雷技术人员深入学习相关法律法规和国家
日前,甘肃酒泉市自然资源局发布《关于公示广核新能源甘肃玉门光伏光热风电制氢示范项目40万千瓦风电工程用地选址的公告》,项目总装机规模为400MW,主要建设64台6.25MW的风力发电机组和64台机组变电站,详情如下:关于公示广核新能源甘肃玉门光伏光热风电制氢示范项目40万千瓦风电工程依据《中华人民
北极星氢能网获悉,11月18日,由山西孝义市国有资本投资运营有限公司和鹏飞集团共同主办的2024年光电氢储一体化项目启动仪式举行。项目依托鹏飞集团制氢、储氢、加氢、充电等产业优势,推进孝义市太阳能光伏发电、充电桩基础设施、电解水制氢、储氢、加氢等多功能为一体的“光电氢储一体站”建设。项目
北极星氢能网获悉,近日,四川省经信厅针对《关于加大氢能产业示范政策支持力度的建议》进行了答复,其中指出将切实推动政策内容落地落实,突破政策制约,在攀枝花、雅安、甘孜、阿坝、凉山等地,打造一批集中式、规模化水风光发电制氢工程,推动氢储能与多种形式储能协同发展,为新型能源体系和战略腹
11月18日,张家口市风氢一体化源网荷储综合示范工程项目(一期)EPC招标中标公示。信息显示:第一中标排序人为中国电建集团昆明勘测设计研究院有限公司,投标报价为15.2亿;第二中标排序人为中国电建集团华东勘测设计研究院有限公司,投标报价为14.57亿;第三中标排序人为中国电建集团贵阳勘测设计研究
11月19日,可再生能源创新离网制绿氢实验及中试建设EPC总承包项目招标四次延期公告发布。招标文件的获取获取时间:2024年9月30日23:30至2024年11月19日23:30延期为2024年9月30日23:30至2024年11月27日23:30。在此之前,该项目分别于10月11日发布变更公告,10月22日、10月31日、11月12日发布了延期
北极星储能网获悉,11月15日,湖北咸宁市人民政府办公室印发咸宁市发展新质生产力三年行动方案(2024—2026年)的通知。文件提出,支持风电光伏本地消纳制氢,提前布局新型储能设备。加快通山大幕山抽水蓄能电站等重大清洁能源设施建设,清洁能源装机容量达3000兆瓦以上。推进各类资源节约集约利用,壮
11月13日,晶澳(北京)氢能科技有限公司成立,法定代表人为杨爱青,注册资本1亿人民币。该公司由晶澳科技旗下晶澳太阳能投资(中国)有限公司全资持股。该公司经营范围包括:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;税务服务;信息咨询服务(不含许可类信息咨询服务);企业管
近日,内蒙古自治区巴彦淖尔市乌拉特前旗与华电北方新能源公司签订风光制氢一体化项目合作协议。该项目总投资37.57亿元,规划建设风电装机规模42万千瓦、光伏5万千瓦,年产氢气2万吨,配套建设输氢管道约20公里,从明安镇并入达茂旗至包头市氢气长输管道进行消纳,着力打造氢能产业基地。
北极星氢能网获悉,11月14日,深能北方能源控股有限公司与东华工程科技股份有限公司在安徽合肥成功举行战略合作协议暨鄂托克旗风光制氢一体化合成绿氨项目绿氢制绿氨EPC合同签约仪式。深能鄂托克旗风光制氢一体化合成绿氨项目于2022年9月29日列入自治区第二批风光制氢示范项目,是鄂尔多斯市首个开工的
8月9日,中国(绵阳)科技城工业技术研究院举行线上发布会,推出了由中国工程物理研究院应用电子学研究研发的“微波煤制氢技术”。随着全球气候问题日益严峻,氢能作为清洁、高效、可再生的新型能源,正受到越来越多的关注。我国《氢能产业发展中长期规划(2021—2035年)》的发布,标志着氢能发展正式
2024年7月19~21日,辽宁盘锦市华锦阿美精细化工及原料工程项目完成空分装置首批大型设备进场及安装工作,标志着项目建设进入设备安装阶段。空分装置长周期设备从2023年7月开始制作,经过一年的制作周期,空冷塔、水冷塔、两台分子筛纯化器共四台大型设备首批进场安装,各设备直径约5米、高度约30米,单
北极星氢能网获悉,5月29日,国务院印发《2024—2025年节能降碳行动方案》。《方案》提出,有序建设大型水电基地,积极安全有序发展核电,因地制宜发展生物质能,统筹推进氢能发展。到2025年底,全国非化石能源发电量占比达到39%左右。加强氢冶金等低碳冶炼技术示范应用。推进石化化工工艺流程再造。加
北极星氢能网获悉,5月21日,国家管网集团北京管道有限公司发布北京管道陕京线地区低阶煤气化制氢方案招标。要求对陕京管道沿线煤炭资源与煤质调研、当前主流的煤气化制氢技术对比,沿线典型煤种气化反应性及其灰熔融特性评价,大宗煤气化催化剂的实验筛选与评价,大规模煤气化制氢技术指标及其管道掺
北极星氢能网获悉,5月13日,陕煤电力石门有限公司发布制氢设备招标,据悉该项目为陕煤石门2×66万千瓦扩能升级改造项目,位于湖南省常德市石门县新关镇的新关社区,部分位于石门县城楚江街道的阎家溶村。本次招标范围为两台机组所配套的完整的制氢系统所有设备,其中制氢机采用整机进口设备,含整流柜
北极星氢能网获悉,2024年4月2日,贵州省工业和信息化厅发布了关于印发《关于加快发展先进制造业集群的指导意见》的通知。其中氢能相关的内容包括:二、培育重点及主攻方向(一)巩固提升传统产业集群2.磷煤化工集群。——煤化工。加快推动传统煤化工产业实施绿色化改造,大力发展基础煤化工深加工产品,提
北极星氢能网获悉,1月1日,陕西榆林市榆阳区人民政府与陕西中核交大超洁能源技术有限公司、中核华辰建筑工程有限公司签订了《煤炭超临界水气化制氢发电多联产项目》三方投资协议。据悉,“煤炭超临界水气化制氢发电多联产技术”俗称“超临界水蒸煤技术”,是西安交大郭烈锦院士带领科研团队经过20年攻
北极星氢能网获悉,近日,山西鹏飞集团有限公司董事局主席兼总裁郑鹏接受记者的采访。记者:氢能作为清洁能源,鹏飞集团是如何构建完整的氢能产业链,实现上下游产业的协同发展?郑鹏:近年来,为助力实现“双碳”目标,鹏飞集团依托山西发展氢能的资源优势、成本优势、应用场景优势,结合集团自身产业
北极星氢能网获悉,12月18日,贵州美锦“煤—焦—氢”综合利用示范项目举行点火烘炉仪式。该项目2022年7月在六枝特区路喜园区成立,总投资约100亿元,规划用地1800余亩。该项目依托贵州丰富的煤炭资源,通过绿色精深加工和高效清洁利用进行低碳、减碳发展,项目采用国际最先进大型焦炉清洁生产工艺,最
10月16日,贵州省六盘水市六枝特区煤焦氢产业链项目签约仪式举行。近年来,六枝特区围绕服务新型工业化,坚持项目为王,大抓项目,抓大项目,促成了贵州美锦煤焦氢综合利用示范项目、磷酸铁锂等重大项目顺利落地。
北极星氢能网获悉,9月,安泰集团公告称,拟通过本次特定对象发行融资建设“山西安泰集团股份有限公司30000m/h焦炉煤气制氢项目”,利用现有焦炉煤气作为原料,采用PSA装置变压吸附法提取氢气,生产满足燃料电池汽车用燃料氢气。据悉,安泰集团目前仍以焦化和轧钢为核心业务,产业链布局有待完善,延伸
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!