登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
其中,ρ为电池密度;Cp为电池比热容;λ为不同方向的电池导热系数;q为总生热率。边界条件如式(2)所示:
(2)
其中,n为电池表面法线矢量方向;h为对流换热系数;Tamb为电池所处环境温度;T∞为电池温度。本工作参数获取方式主要为拆解测量、实验标定、参数辨识、文献参考等,模型具体参数和分类如表1所示。模型中设计参数部分,如极片厚度L、集流体厚度Lcc、正负极厚度Lp/n、隔膜厚度Lsep、活性物质总反应面积Atotal等参数可通过工具测量获得。而正负极均衡电势曲线Uref, p/n则通过制作纽扣电池,以极小电流的充放电实验来获取。固相颗粒最大嵌锂浓度cs, max,初始时刻化学计量比x0/100、y0/100等一般通过参数辨识进行获取。正负极固相颗粒半径rs, n/p、电解质初始盐浓度cl0、孔隙率ε等由电池厂商测定后提供。模型中的热物性参数,如比热容Cp、对流换热系数h等通过实验进行测定。液相参数中的液相扩散系数De、液相离子电导率与温度T及电解质浓度c有关,可以直接引用文献中的参考值。正负极材料的熵热系数通过对COMSOL案例库中已录入的数据进行适当调整即可得到有效的dU/dT曲线。由于固相扩散系数Ds、反应速率常数k与温度T密切相关且符合Arrhenius公式,可以通过不同温度下的脉冲实验标定得到相应数值和活化能Ea。
表1电化学热耦合模型参数
注:①为实际测量值,②为参数辨识数据,③为电池厂商提供数据,④为文献参考值,⑤为标定数据。
之后,对某软包电池进行三维结构建模,电池标称容量为24 Ah,工作电压区间为2.5~4.3 V,工作温度区间为-20~55 ℃。图1左侧为三维模型几何结构,模型考虑了x、y方向的极片尺寸,并引入了集流体和极耳的几何结构。三维模型中电化学部分采用P2D模型理论,模型中正负极由固相颗粒和电解液组成固液两相,隔膜区域充满电解液。其中,正负极集流体箔材属性为Al和Cu,仅起到电子载体作用。图1锂离子电池三维模型结构示意图
同时考虑三维模型中集流体长度方向上的电势分布,满足式(3)
(3)
其中,ρ为集流体的电阻率;Acc为集流体沿长度方向横截面积。三维传热模型中,电流密度在空间上存在分布差异,造成局部产热功率q不同。相应区域的热物性参数如表2所示。
表2三维几何模型热物性参数
三维模型中局部活性区域的反应速率k、扩散系数Ds、De和电导率κ等参数受局部温度影响,利用Arrhenius公式进行控制。进一步,在该三维电化学热耦合模型中对多孔电极负极添加析锂副反应方程建立析锂模型。在只含有锂析出副反应的模型基础上考虑了可逆锂重嵌入机制,搭建更加符合实际的析锂模型。除了正常嵌锂反应动力学理论外,析锂反应速率也满足Bulter-Volmer方程,如式(4)所示:
(4)
其中,jpl, 0为析锂交换电流密度;αa, pl和αc, pl为电化学传递系数,分别取值为0.3、0.7;ηLi为析锂反应过电势,当ηLi<0时,析锂副反应触发。析锂反应交换电流密度jpl, 0如式(5)所示:
(5)
其中,kpl为锂沉积反应速率常数。析锂过电势ηLi满足式(6):
(6)
其中,Ue, Li为析锂反应平衡电势,一般取值0 V;为固体电解质界面(solid electrolyte interface,SEI)膜和析锂产物内层与外层之间的电势差V。锂析出后,一旦负极ηLi>0时,可逆锂会重新溶解,其动力学反应如式(7)所示:
(7)
其中,jst, 0为锂溶解交换电流密度。SEI膜阻和析锂产物造成电势差满足Ohm定律,即:
(8)
其中,在析锂期间,Rfilm随析锂程度的增加而增厚,增厚部分主要因析出的锂金属覆盖在固相颗粒上。另外,析出的金属锂与电解液发生反应,产物主要为Li2CO3、LiF等,造成SEI膜增厚。因而,膜阻Rfilm可表示为初始SEI膜阻R0和新增SEI膜阻△Rfilm之和,即:
(9)
其中,膜阻Rfilm表达式可由电导率σ和δ之间关系计算,即:
(10)
其中,δ、σ分别为SEI膜厚度和SEI膜电导率。新增SEI膜厚度△δ变化率与析锂反应电流密度之间关系满足下式,即:
(11)
其中,M为金属锂摩尔质量,ρ为锂金属密度。表3为文中析锂模型中金属锂沉积及可逆锂重嵌入反应动力学重要参数。部分参数来源于文献,没有引用的参数在实际范围内进行评估,以符合实验数据。
表3析锂与可逆锂重嵌入动力学反应相关参数
在COMSOL Multiphysics 5.4软件平台中基于上述控制方程对锂离子电池建立三维电化学热耦合析锂模型。
1.2 模型验证
模型建立完成后,通过常温25 ℃下不同倍率恒流充电仿真与实验结果对比,验证模型准确性。其中,25 ℃下选用1/3 C、1/2 C、1 C、5/2 C倍率,从0% SOC状态下充电至截止电压4.2 V。仿真结果如图2(a)所示,图中为25 ℃下不同倍率充电电压曲线(带标记为实验数据,实线为仿真数据)。对比结果表明,常温下模型仿真数据和实验数据较吻合,且端电压的RMSE小于10 mV,表明该三维电化学热耦合模型能够较好地模拟电池充电过程中的端电压变化,模型精度较高。
图225℃不同倍率充电时端电压变化和电池采样位置
进一步,利用三维模型模拟电极局部区域温度差异,选取电极区域5个测温点,采样点位置如图2(b)所示。图3(a)和3(b)分别为常温1 C和5/2 C恒流充电过程中电极区域5个点温度变化情况。采样点温度表现为T2>T1>T3>T5>T4,其中1、2位置靠近极耳,该处电流密度较大,产热量大,因此温度要高于其他位置。图3(a)中1 C倍率下模型与实际采样点温度最大误差不超过0.5 ℃,图3(b)中5/2 C倍率的模型与实际采样点温度最大误差小于1.5 ℃,造成误差的主要原因来自两方面:一方面是热物性参数测试的精确性;另一方面由于实验时受到温箱内部气体的对流散热影响,导致实验温度值相对仿真值更低。但模型曲线整体上的趋势与实际一致,不会影响后续的分析结果。总体而言,1 C倍率下各区域温度差异不大,靠近负极极耳处的位置2与底部位置4之间最大温差仅为0.4 K,原因为该款电池为软包叠片型,外部有足够的散热面积用于散热。在大倍率5/2 C下,位置2与位置4之间最大温差也仅为2.3 K。
图3不同倍率充电时电极区域温度验证
析锂现象主要发生于大倍率快充和低温工况下,模型中输运性能参数、反应动力学参数均对温度敏感,并符合Arrhenius公式。在低温0 ℃下仿真验证该模型对端电压及温度的响应能力。验证结果如图4(a)和4(b)所示,模型在0 ℃下不同倍率充电电压及位置3处的温度均能和实验数据较好地吻合。电压在低SOC区间误差较大,主要原因为电池动力学参数对温度更加敏感,但整体上0 ℃仿真电压曲线基本能描述电压的变化情况。实际测量中,热电偶采集温度为大面中心位置温度,接近模型仿真中测温点3处温度,因此,选取此处进行温度验证。结果显示,在1/2 C小倍率下温度较为接近,1 C及以上倍率存在一定误差,但温度最大误差小于1 ℃。低温验证结果表明,模型能较为准确地描述低温充电下电池端电压及温度变化,模型精度较高。
图40℃不同倍率充电时模型验证
同时,电池析锂动力学反应和局部温度密切相关。排除产热过于严重的极耳区域,可以用电极区域变化来描述充电温度差异的变化规律,为局部温度与电极区域平均温度之差,即:
(12)
如图5所示,在充电初期10 s时电极区域最大温差仅为0.05 K,发生在极耳附近。随着充电的进行,在300 s时温度增长到0.18 K,充电截止时刻仍达到0.15 K。低温下不同倍率仿真验证表明,三维电化学热耦合模型可以有效模拟电池在低温下电极局部温度间的差异。
图50℃下1 C倍率充电期间电池温度分布差异变化情况
进一步,为分析电池局部析锂情况,图6显示了充电期间负极-隔膜处的固液相电势差分布图。达到析锂触发时间tonset=205 s时,靠近极耳区域开始出现φs-φe<0 V,造成靠近极耳区域首先触发析锂副反应,其余区域暂未出现。
图6负极-隔膜处φs-φe分布
在三维析锂模型理论中,金属锂析出后副反应产物包括3部分,为不可逆锂、可逆锂和用于SEI膜增厚的锂。图7为隔膜-负极边界处副反应产物浓度面内分布情况。在达到tonset=205 s之前,析锂反应暂未触发,副反应产物浓度为0。t=300 s时,界面处副反应产物浓度已经呈现分布非均一现象,靠近极耳处浓度较大。随着时间的推移,界面处副反应产物浓度增加,截止时刻达到了1.09×103mol/m3。
图7隔膜与负极边界处副反应产物浓度变化情况
对极片厚度z轴方向分析,如图8所示。负极厚度方向析锂程度存在差异,在充电截止时刻,负极区域析锂副产物浓度最大的位置在靠近隔膜处,产物浓度达到1.09×103mol/m3,而靠近集流体处析锂最轻微,产物浓度仅为220 mol/m3。
图8负极区域副反应产物浓度
最后,对负极整个区域副反应产物浓度进行积分处理。图9为副反应产物中各组分对全电池容量衰减率的影响。3种产物分别造成0.2%、0.69%、3.03%的全电池容量衰减,充电结束因析锂整体上造成电池发生了3.92%的容量衰减率。
图9 0℃下1 C倍率充电副反应产物造成容量变化情况
基于上述三维电化学热耦合析锂模型可以定量描述在低温大倍率充电期间电池内部的析锂程度、温度分布等非均一现象。充电期间,极耳区域电流密度较大,该区域负极电位最先达到析锂电位0 V,过早析锂。另外,极耳区域过大的电流密度也造成该区域温度高于其他区域。上述两现象综合影响电池局部析锂的发生,总体上靠近极耳区域先发生析锂,且极耳区域最终析锂程度最严重
1.3 电池参数设计优化
1.3.1 电极尺寸对析锂影响
为探究电极尺寸对析锂的影响,对1 C倍率充电过程中负极-隔膜处固液电势差进行分析。由图10中不同电极长度的电池局部开始析锂时间、图11中析锂时负极-隔膜处固液电势差分布情况可知,长度为20 cm时,在tonset=205 s时靠近极耳区域固液相电势差开始小于0。底部最大值仅为2.28 mV,整个界面处电势差分布差异可以忽略。电极长度增加到40 cm时,靠近极耳处tonset提前到193 s。分布差异也明显增大。电极长度增加到60 cm时tonset提前到175 s开始析锂,80 cm时tonset提前153 s,界面处最大差异达到33.4 mV。由此说明,电极长度的增加会使得电池内部析锂触发时间提前。
图10不同电极长度的电池局部开始析锂时间
图11不同长度电池局部开始析锂时隔膜处φs-φe分布
进一步,对局部析锂开始触发时刻负极-隔膜界面电流密度分布分析。图12为电流密度iz分布情况,由图12(a)可知,长度为20 cm电池达到tonset=205 s时,iz, max为0.7 A/m2。随着电极长度增加,长度为40 cm电池开始析锂时,界面iz, max也随之增大到0.74 A/m2。长度为60 cm和80 cm,界面处iz, max分别为0.81 A/m2和0.9 A/m2,这也造成了尺寸增加后,电池内部提前达到析锂触发时刻tonset。随着长度的增加,电极区域温度差异增大和电流密度不一致性程度增大。
图12不同长度电池局部开始析锂时负极-隔膜处电流密度iz
图13为不同长度电极析锂量情况,即容量衰减率。在局部温度和电流密度多因素综合影响下,长度越长,析锂开始时间越早。
图13不同长度电极整体析锂程度
1.3.2 极耳位置对电池析锂影响极耳位置的设计将影响靠近极耳区域的电流密度和温度的分布,对局部析锂的发生存在一定影响。本工作选取了长度均为40 cm的具有3种不同极耳位置的电池进行分析,以探究极耳位置对各项电性能的影响,尤其是局部析锂。极耳位置设计如图14所示,分为I、II、III三种类型,并对其在0 ℃下1 C倍率恒流充电。不同极耳类型的电池局部开始析锂时间如图15所示。
图14 3种不同极耳位置电池结构
图15不同极耳类型的电池局部开始析锂时间
图16为3种极耳类型电池在局部开始出现析锂时负极-隔膜界面的固液相电势差分布情况。I类电池在达到析锂触发时刻tonset=193 s时,靠近极耳区域开始出现<0,该区域首先析锂,但底部的为8.67 mV,不一致性较大。然而,II类电池在tonset为201 s时靠近极耳区域先析锂,此时中部区域接近4.02 mV。III类电池tonset为221 s时极耳区域局部析锂,中部区域为3.07 mV,不一致性远低于I类,接近II类。
图16不同极耳位置电池局部开始析锂时隔膜处φs-φe分布
进一步对局部析锂开始触发时负极-隔膜界面电流密度iz分布进行分析。由电流密度分布图可知,3种极耳设计下的电池iz,max数值大小差异不大,如图17所示。其中,I类电池中界面处为0.13 A/m2,另外两种电池较小,II类电池为0.08 A/m2,III类电池则更小,仅为0.05 A/m2。说明III类电池在电流密度分布上更加均匀,也使得电池内部各区域产热均匀,温度差异更小。
图17不同类型极耳位置电池局部开始析锂时负极-隔膜边界处电流密度iz
极耳位置不同导致电极区域温度和电流密度不一致性程度有所差异,在多种因素的耦合下电池整体析锂程度也有所不同。如图18所示,I类电池和II类电池在温度、电流密度多种因素综合影响下析锂量几乎相同,析锂量达到3.77%。然而,III类电池在温度分布、电流密度分布不一致性要优于I和II类电池,充电截止时刻析锂量降低到3.14%,相对析锂程度降低16.7%。因此,III类电池将极耳置于长度方向轴线对侧将有利于减缓析锂程度。
图18不同极耳位置设计电池整体析锂程度Fig.
18Different lug positions to design the overall lithium precipitation degree of the battery
2 结论
本工作以P2D模型为基础,通过耦合产热模型,并在模型中加入了考虑可逆锂重嵌入机制的析锂副反应,建立了三维电化学热耦合析锂模型。通过多种方式获取模型参数后,对模型进行验证,验证结果表明了该模型在常温和低温下条件下可以较好地模拟电池端电压的变化,并且能定量描述在低温大倍率充电期间电池内部的析锂程度、温度分布等非均一现象。此外,通过仿真对电极尺寸、极耳位置等因素的分析,研究了结构设计对非均一析锂的影响。不同电极尺寸的分析结果表明,电极长度增加会致使电极区域温度差异增大和电流密度不一致性程度增大,综合影响下使电池析锂时间略有提前,但对电池总体析锂程度影响较小。
不同极耳位置的分析结果表明,当极耳位置处于电极长度方向的轴线对侧处时,电池温度和电流密度分布更加均匀,可以延缓负极析锂起始时间,能够有效缓解负极析锂,相对析锂程度降低了16.7%。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年4月10日,全球储能行业顶级盛会——第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心盛大开幕。ESIE2025由中关村储能产业技术联盟、中国能源研究会和中国科学院工程热物理研究所主办。本届峰会以“数智赋能产业变革,储能重塑能源格局”为主题,开幕式现场汇聚了国内外政府主
4月10日-12日,首都国际会展中心内,一场关于能源未来的盛会正在上演。2025第十三届储能国际峰会暨展览会(ESIE)如约而至,来自全球的能源科技先锋齐聚一堂,共同描绘绿色能源的宏伟蓝图。作为全球规模最大、规格最高、最具含金量的储能产业盛会之一,业内领先企业纷纷亮相。这里不仅是储能企业扩大品
4月10日上午,中关村储能产业技术联盟发布2024年度中国储能企业出货量八大榜单。双登股份再获行业认可,荣登中国储能技术提供商2024年度全球市场基站/数据中心电池出货量榜首。在数字经济蓬勃发展、全力迈向碳中和的新纪元,“连接与算力”是发展的主旋律。数据中心、算力中心作为算力革命的核心载体,
锂电产业“出海”这次立功了!特朗普宣布“90天的关税暂停”其实就是怂了!尽管美国对中国的关税已经加到了104%,而锂电池产品的关税增长更是达到了130%以上,但是,依然没有压垮产业信心。相反,真正绷不住的反而是美国自己。4月9日,特朗普表示“已授权对不采取报复行动的国家或地区实施90天的关税暂
根据高工产研锂电研究所(GGII)调研数据显示,2024年中国锂电池制浆系统市场规模(按营收口径统计)约为47亿元,同比下降超过15%。下滑的主要原因在于2024年锂电池行业整体扩产节奏放缓。展望未来,随着新能源汽车及储能市场的持续增长,预计到2027年,中国锂电制浆系统市场规模有望突破60亿元。主要
4月11日,北极星太阳能光伏网发布一周要闻回顾(2025年4月7日-4月11日)。政策篇国家能源局:重点监管2024以来落实可再生能源电力消纳责任权重、“沙戈荒”基地建设等情况日前,国家能源局发布关于开展2025年电力领域综合监管工作的通知。通知指出,重点监管2024年以来落实可再生能源电力消纳责任权重
北极星售电网获悉,4月10日,四川甘孜州经济和信息化局发布关于公开征求《甘孜州新能源汽车及动力电池(含储能)产业链发展方案(2025—2027年)(征求意见稿)》意见建议的公告。文件提出,加快多元化试点示范应用。立足我州水电、风能、太阳能等清洁能源资源优势,探索布局建设新型储能设施,积极发
4月10日,欣旺达2MWh液冷一体式移动储能车(以下简称欣纪元2000)顺利完成5000公里极限测试,并在ESIE2025真机亮相发布。穿越大半个中国,横跨二十多座城市,历经多重严苛环境考验,全方位验证了其安全可靠性及场景适应性。目前欣纪元2000已完成相关认证,将于2025年5月正式量产。六道安全防护体系,筑
2025年4月10日-12日,华昱欣携高安全、高收益的全场景光储解决方案亮相第13届储能国际峰会暨展览会(ESIE2025),全面展示其在产品创新、安全设计、智能运维等方面的最新技术成果,以行业领先的产品力和服务水平诠释其构筑绿色价值、助力双碳目标实现的坚定决心。第13届储能国际峰会暨展览会(ESIE2025
4月8日,工信部发布关于印发2025年工业和信息化标准工作要点的通知。文件指出,加强优势产业标准建设。落实光伏、锂电池等产业标准体系,加快先进光伏、新型储能、高性能锂电池等重点产品分级分类标准制修订,加强智能光伏、锂电池回收利用、显示模块环境适应性等关键技术标准攻关,以高标准带动关键材
2025年4月10日,由中关村储能产业技术联盟、中国能源研究会、中国科学院工程热物理研究所主办的第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心盛大召开。开幕式上,中国科学院工程热物理研究所所长、中关村储能产业技术联盟理事长陈海生先生作主旨报告,并重磅发布了《储能产业研
4月10日,第十三届储能国际峰会暨展览会(ESIE2025)在北京首都国际会展中心拉开帷幕,本次展会聚焦“数智赋能产业变革,储能重塑能源格局”,汇聚全球储能领域专家及企业代表,共探能源结构转型新路径。精控能源作为行业技术标杆,携全栈自研核心技术成果亮相A2馆A227展位,与业界同仁深度探讨储能行
4月10日,全球领先的智能电池科技企业远景动力(AESC)亮相第十三届储能国际峰会暨展览会(ESIE2025),系统化展示300+Ah、500+Ah、700+Ah大容量储能电芯产品,全面引领“交易时代储能电芯”技术升级。本次展会,远景动力发布530Ah储能电芯,实现“单颗电芯超1.6度电”,循环寿命12000次,能量效率高达
4月10日,“第十三届储能国际峰会暨展览会(ESIE2025)”在首都国际会展中心盛大启幕。思格新能源携全模块化光储融合解决方案重磅亮相,全面展现其在光储融合、高度集成、灵活部署、AI智能方面的领先优势,助力新能源迈向高质量发展新阶段。随着新能源电价全面进入市场化阶段,储能产业正从传统的配套
面对当前储能行业激烈的市场竞争格局,以往比拼产能、低价竞争的时代已经过去,降本增效成为企业开拓市场的关键利器!这里的“成本”并非仅仅是价格的高低,更从创新研发角度对企业提出了更高、更新的要求。2024年以来,500+Ah、600+Ah、700+Ah等不同规格的大容量电芯相继面世,迈出了储能电池向“更大
4月2日,交通运输行业标准《船舶载运锂电池安全技术要求》发布活动在厦门举行。这是我国交通运输行业首部关于锂电池海上安全运输技术要求的推荐性标准,标志着我国锂电池海运安全管理迈入规范化、国际化新篇章。该标准将于2025年5月1日起正式施行。本次发布活动以“创新驱动安全领航”为主题,由厦门海
北极星储能网获悉,4月7日,冠盛股份发布其投资者关系活动记录,披露冠盛东驰固态电池项目预计今年年底开始投产,产能爬坡情况将根据现场调试和生产进度决定。冠盛股份提到,其固态电池有两个发展方向。在储能电池领域,采用磷酸铁锂半固态方案,正极材料为磷酸铁锂,负极材料为石墨,未来可能用到硅碳
作者:叶锦昊1,侯军辉2,张正国1,3,凌子夜1,3,方晓明1,3,黄思林2,肖质文2nbsp;单位:1.华南理工大学传热强化与过程节能教育部重点实验室;2.厦门新能安科技有限公司;3.广东省热能高效储存与利用工程技术研究中心引用:叶锦昊,侯军辉,张正国,等.100Ah磷酸铁锂软包电池的热失控特性及产气行为[J].储能科
“(未来几年)新一代动力全固态电池将实现产业化。从战略全局看,当前重点要防范的是全固态电池技术路线带来的颠覆性风险。”在日前举行的中国电动汽车百人会论坛(2025)上,中国科学院院士欧阳明高再次向行业发出警告。△图为中国科学院院士欧阳明高作主旨发言中国电池产业又走到了关键的节点。“这
随着全球能源转型的加速推进,尤其是2021年我国首次提出构建新型电力系统以来,新型储能作为新能源和电力系统产业链中的关键环节,其重要性日益凸显,装机规模迅猛扩张,吸引大量资本和企业纷纷涌入,导致整个储能市场迅速从无限商机的蓝海转变为汹涌波涛的红海,新型储能一方面面临市场规模持续扩大,
船舶电池需求升级。由于缺乏新的强预期引导,投资者的目光也重新聚焦于具备扎实基本面支撑的领域。在此背景下,锂电池行业,特别是其在传统应用场景电动化进程中的价值提升潜力,正重获市场关注。其中,船舶电动化因其巨大的市场渗透空间和对大容量电池的显著需求,正成为新的焦点。船舶电动化被视为锂
3月24日,林洋储能与TÜV南德意志集团联合举办产品授证仪式,正式宣布林洋储能自主研发的PowerAtlantic液冷储能电池舱及PowerKey智慧液冷储能柜成功通过欧盟CE认证。TÜV南德意志大中华集团智慧能源副总裁许海亮、智慧能源储能项目经理刘海洋,林洋能源高级副总裁方壮志、林洋储能副总经理何振宇博士及
北极星储能网获悉,4月3日晚间,恩捷股份发布公告,下属子公司SEMCORPManufacturingUSALLC(以下简称“美国恩捷”)与美国某知名汽车公司(以下称“本次合作客户”)签订《供应协议》。本次合作客户预计2026年至2030年向美国恩捷(及其关联公司)采购约9.73亿平方米的锂电池隔离膜,具体以采购订单为准
3月20日,中材科技股份有限公司(以下简称“中材科技”或“公司”)发布《2024年年度报告》。报告披露,2024年,中材科技实现营业收入239.84亿元,同比下降7.37%;实现归属于上市公司股东的净利润8.92亿元,同比下降59.89%;实现归属于上市公司股东的扣除非经常性损益的净利润3.84亿元,同比下降80.48%
据北极星储能网不完全统计,2025年1月共发布了94项有关储能的政策。国家层面16个,地方层面78个。地方政策中,新能源配储类7个,补贴类12个,电力市场类10个,电价类7个。另外,各地公布的重大项目清单中,涉及储能电站项目总计101个、总规模超14.3GW/29.9GWh。新能源配储类政策数量有所减少,广东、大
北极星储能网获悉,2月20日晚间,星源材质发布公告,公司于2025年2月20日召开第六届董事会第十一次会议、第六届监事会第九次会议,审议通过了《关于变更部分募集资金用途及新增募集资金投资项目的议案》,同意公司将2021年度向特定对象发行A股股票募集资金投资项目“高性能锂离子电池湿法隔膜及涂覆隔
近期,佛塑科技与金力股份的收购事宜正在紧锣密鼓地推进。自去年起,佛塑科技计划“蛇吞象”金力股份的传闻便传得沸沸扬扬。这一举动,被市场视为佛塑科技在业绩困境中的一次自救行动。然而,此时通过收购金力股份切入隔膜领域,对佛塑科技真的是明智之举吗?01佛塑科技的转型之路成立于1988年的佛塑科
北极星储能网获悉,2月12日,星源材质在投资者关系活动记录表中披露了公司固态电池最新进展。星源材质表示,公司在固态电池领域布局全面,参股公司深圳新源邦科技有限公司的氧化物电解质已实现量产,硫化物和聚合物电解质则处于小批量供应阶段。近期,公司与大曹化工株式会社及其上海子公司达成合作,
北极星售电网获悉,2月11日,湖北荆门市发改委发布关于荆门市2024年国民经济和社会发展计划执行情况与2025年国民经济和社会发展计划草案的报告。报告提到2024年重点工作完成情况:工业经济总量连续13年居全省前5位;工业用电量同比增长10.8%,居全省第4位。新兴产业加快发展。新能源新材料、汽车智能装
新型电力系统中提升电力产业链供应链安全的建议(来源:中能传媒研究院作者:陈智)(中国水利电力物资集团有限公司党委书记、董事长)党的十八大以来,习近平总书记多次对能源电力产业链供应链安全稳定作出重要指示,相关重要论述为在构建新型电力系统过程中提升电力产业链供应链韧性安全指明了方向。
2月5日,云南恩捷新材料股份有限公司与玉溪高新技术产业开发区管理委员会正式签订年产千吨级硫化物固态电解质材料中试生产线项目合作框架协议。由恩捷股份或其旗下的湖南恩捷前沿新材料科技有限公司在玉溪高新区建设的硫化物固态电解质材料中试生产线项目,总投资为2.5亿元,项目建成后可形成年产1000
近日,研究机构EVTank、伊维经济研究院联合中国电池产业研究院共同发布了2025年度锂离子电池四大主要材料行业发展白皮书。EVTank数据显示,2024年度,中国锂离子电池四大主要材料总产值3472.4亿元,同比下滑24.8%,已经连续两年出现同比下滑。据EVTank分析,2024年度,中国锂离子电池四大主要材料的出
东峰集团日前发布公告称,公司控股股东香港东风投资集团有限公司拟转让其所持有的东峰集团股份。截至2024年上半年,香港东风投资持有东峰集团股份约8.71亿股,持股比例为47.26%。公司实际控制人为黄炳文、黄晓佳与黄晓鹏。本次交易中,香港东风投资拟将其持有的东峰集团3.75亿股股份转让给衢州智尚,约
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!