登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
其中,ρ为电池密度;Cp为电池比热容;λ为不同方向的电池导热系数;q为总生热率。边界条件如式(2)所示:
(2)
其中,n为电池表面法线矢量方向;h为对流换热系数;Tamb为电池所处环境温度;T∞为电池温度。本工作参数获取方式主要为拆解测量、实验标定、参数辨识、文献参考等,模型具体参数和分类如表1所示。模型中设计参数部分,如极片厚度L、集流体厚度Lcc、正负极厚度Lp/n、隔膜厚度Lsep、活性物质总反应面积Atotal等参数可通过工具测量获得。而正负极均衡电势曲线Uref, p/n则通过制作纽扣电池,以极小电流的充放电实验来获取。固相颗粒最大嵌锂浓度cs, max,初始时刻化学计量比x0/100、y0/100等一般通过参数辨识进行获取。正负极固相颗粒半径rs, n/p、电解质初始盐浓度cl0、孔隙率ε等由电池厂商测定后提供。模型中的热物性参数,如比热容Cp、对流换热系数h等通过实验进行测定。液相参数中的液相扩散系数De、液相离子电导率与温度T及电解质浓度c有关,可以直接引用文献中的参考值。正负极材料的熵热系数通过对COMSOL案例库中已录入的数据进行适当调整即可得到有效的dU/dT曲线。由于固相扩散系数Ds、反应速率常数k与温度T密切相关且符合Arrhenius公式,可以通过不同温度下的脉冲实验标定得到相应数值和活化能Ea。
表1电化学热耦合模型参数
注:①为实际测量值,②为参数辨识数据,③为电池厂商提供数据,④为文献参考值,⑤为标定数据。
之后,对某软包电池进行三维结构建模,电池标称容量为24 Ah,工作电压区间为2.5~4.3 V,工作温度区间为-20~55 ℃。图1左侧为三维模型几何结构,模型考虑了x、y方向的极片尺寸,并引入了集流体和极耳的几何结构。三维模型中电化学部分采用P2D模型理论,模型中正负极由固相颗粒和电解液组成固液两相,隔膜区域充满电解液。其中,正负极集流体箔材属性为Al和Cu,仅起到电子载体作用。图1锂离子电池三维模型结构示意图
同时考虑三维模型中集流体长度方向上的电势分布,满足式(3)
(3)
其中,ρ为集流体的电阻率;Acc为集流体沿长度方向横截面积。三维传热模型中,电流密度在空间上存在分布差异,造成局部产热功率q不同。相应区域的热物性参数如表2所示。
表2三维几何模型热物性参数
三维模型中局部活性区域的反应速率k、扩散系数Ds、De和电导率κ等参数受局部温度影响,利用Arrhenius公式进行控制。进一步,在该三维电化学热耦合模型中对多孔电极负极添加析锂副反应方程建立析锂模型。在只含有锂析出副反应的模型基础上考虑了可逆锂重嵌入机制,搭建更加符合实际的析锂模型。除了正常嵌锂反应动力学理论外,析锂反应速率也满足Bulter-Volmer方程,如式(4)所示:
(4)
其中,jpl, 0为析锂交换电流密度;αa, pl和αc, pl为电化学传递系数,分别取值为0.3、0.7;ηLi为析锂反应过电势,当ηLi<0时,析锂副反应触发。析锂反应交换电流密度jpl, 0如式(5)所示:
(5)
其中,kpl为锂沉积反应速率常数。析锂过电势ηLi满足式(6):
(6)
其中,Ue, Li为析锂反应平衡电势,一般取值0 V;为固体电解质界面(solid electrolyte interface,SEI)膜和析锂产物内层与外层之间的电势差V。锂析出后,一旦负极ηLi>0时,可逆锂会重新溶解,其动力学反应如式(7)所示:
(7)
其中,jst, 0为锂溶解交换电流密度。SEI膜阻和析锂产物造成电势差满足Ohm定律,即:
(8)
其中,在析锂期间,Rfilm随析锂程度的增加而增厚,增厚部分主要因析出的锂金属覆盖在固相颗粒上。另外,析出的金属锂与电解液发生反应,产物主要为Li2CO3、LiF等,造成SEI膜增厚。因而,膜阻Rfilm可表示为初始SEI膜阻R0和新增SEI膜阻△Rfilm之和,即:
(9)
其中,膜阻Rfilm表达式可由电导率σ和δ之间关系计算,即:
(10)
其中,δ、σ分别为SEI膜厚度和SEI膜电导率。新增SEI膜厚度△δ变化率与析锂反应电流密度之间关系满足下式,即:
(11)
其中,M为金属锂摩尔质量,ρ为锂金属密度。表3为文中析锂模型中金属锂沉积及可逆锂重嵌入反应动力学重要参数。部分参数来源于文献,没有引用的参数在实际范围内进行评估,以符合实验数据。
表3析锂与可逆锂重嵌入动力学反应相关参数
在COMSOL Multiphysics 5.4软件平台中基于上述控制方程对锂离子电池建立三维电化学热耦合析锂模型。
1.2 模型验证
模型建立完成后,通过常温25 ℃下不同倍率恒流充电仿真与实验结果对比,验证模型准确性。其中,25 ℃下选用1/3 C、1/2 C、1 C、5/2 C倍率,从0% SOC状态下充电至截止电压4.2 V。仿真结果如图2(a)所示,图中为25 ℃下不同倍率充电电压曲线(带标记为实验数据,实线为仿真数据)。对比结果表明,常温下模型仿真数据和实验数据较吻合,且端电压的RMSE小于10 mV,表明该三维电化学热耦合模型能够较好地模拟电池充电过程中的端电压变化,模型精度较高。
图225℃不同倍率充电时端电压变化和电池采样位置
进一步,利用三维模型模拟电极局部区域温度差异,选取电极区域5个测温点,采样点位置如图2(b)所示。图3(a)和3(b)分别为常温1 C和5/2 C恒流充电过程中电极区域5个点温度变化情况。采样点温度表现为T2>T1>T3>T5>T4,其中1、2位置靠近极耳,该处电流密度较大,产热量大,因此温度要高于其他位置。图3(a)中1 C倍率下模型与实际采样点温度最大误差不超过0.5 ℃,图3(b)中5/2 C倍率的模型与实际采样点温度最大误差小于1.5 ℃,造成误差的主要原因来自两方面:一方面是热物性参数测试的精确性;另一方面由于实验时受到温箱内部气体的对流散热影响,导致实验温度值相对仿真值更低。但模型曲线整体上的趋势与实际一致,不会影响后续的分析结果。总体而言,1 C倍率下各区域温度差异不大,靠近负极极耳处的位置2与底部位置4之间最大温差仅为0.4 K,原因为该款电池为软包叠片型,外部有足够的散热面积用于散热。在大倍率5/2 C下,位置2与位置4之间最大温差也仅为2.3 K。
图3不同倍率充电时电极区域温度验证
析锂现象主要发生于大倍率快充和低温工况下,模型中输运性能参数、反应动力学参数均对温度敏感,并符合Arrhenius公式。在低温0 ℃下仿真验证该模型对端电压及温度的响应能力。验证结果如图4(a)和4(b)所示,模型在0 ℃下不同倍率充电电压及位置3处的温度均能和实验数据较好地吻合。电压在低SOC区间误差较大,主要原因为电池动力学参数对温度更加敏感,但整体上0 ℃仿真电压曲线基本能描述电压的变化情况。实际测量中,热电偶采集温度为大面中心位置温度,接近模型仿真中测温点3处温度,因此,选取此处进行温度验证。结果显示,在1/2 C小倍率下温度较为接近,1 C及以上倍率存在一定误差,但温度最大误差小于1 ℃。低温验证结果表明,模型能较为准确地描述低温充电下电池端电压及温度变化,模型精度较高。
图40℃不同倍率充电时模型验证
同时,电池析锂动力学反应和局部温度密切相关。排除产热过于严重的极耳区域,可以用电极区域变化来描述充电温度差异的变化规律,为局部温度与电极区域平均温度之差,即:
(12)
如图5所示,在充电初期10 s时电极区域最大温差仅为0.05 K,发生在极耳附近。随着充电的进行,在300 s时温度增长到0.18 K,充电截止时刻仍达到0.15 K。低温下不同倍率仿真验证表明,三维电化学热耦合模型可以有效模拟电池在低温下电极局部温度间的差异。
图50℃下1 C倍率充电期间电池温度分布差异变化情况
进一步,为分析电池局部析锂情况,图6显示了充电期间负极-隔膜处的固液相电势差分布图。达到析锂触发时间tonset=205 s时,靠近极耳区域开始出现φs-φe<0 V,造成靠近极耳区域首先触发析锂副反应,其余区域暂未出现。
图6负极-隔膜处φs-φe分布
在三维析锂模型理论中,金属锂析出后副反应产物包括3部分,为不可逆锂、可逆锂和用于SEI膜增厚的锂。图7为隔膜-负极边界处副反应产物浓度面内分布情况。在达到tonset=205 s之前,析锂反应暂未触发,副反应产物浓度为0。t=300 s时,界面处副反应产物浓度已经呈现分布非均一现象,靠近极耳处浓度较大。随着时间的推移,界面处副反应产物浓度增加,截止时刻达到了1.09×103mol/m3。
图7隔膜与负极边界处副反应产物浓度变化情况
对极片厚度z轴方向分析,如图8所示。负极厚度方向析锂程度存在差异,在充电截止时刻,负极区域析锂副产物浓度最大的位置在靠近隔膜处,产物浓度达到1.09×103mol/m3,而靠近集流体处析锂最轻微,产物浓度仅为220 mol/m3。
图8负极区域副反应产物浓度
最后,对负极整个区域副反应产物浓度进行积分处理。图9为副反应产物中各组分对全电池容量衰减率的影响。3种产物分别造成0.2%、0.69%、3.03%的全电池容量衰减,充电结束因析锂整体上造成电池发生了3.92%的容量衰减率。
图9 0℃下1 C倍率充电副反应产物造成容量变化情况
基于上述三维电化学热耦合析锂模型可以定量描述在低温大倍率充电期间电池内部的析锂程度、温度分布等非均一现象。充电期间,极耳区域电流密度较大,该区域负极电位最先达到析锂电位0 V,过早析锂。另外,极耳区域过大的电流密度也造成该区域温度高于其他区域。上述两现象综合影响电池局部析锂的发生,总体上靠近极耳区域先发生析锂,且极耳区域最终析锂程度最严重
1.3 电池参数设计优化
1.3.1 电极尺寸对析锂影响
为探究电极尺寸对析锂的影响,对1 C倍率充电过程中负极-隔膜处固液电势差进行分析。由图10中不同电极长度的电池局部开始析锂时间、图11中析锂时负极-隔膜处固液电势差分布情况可知,长度为20 cm时,在tonset=205 s时靠近极耳区域固液相电势差开始小于0。底部最大值仅为2.28 mV,整个界面处电势差分布差异可以忽略。电极长度增加到40 cm时,靠近极耳处tonset提前到193 s。分布差异也明显增大。电极长度增加到60 cm时tonset提前到175 s开始析锂,80 cm时tonset提前153 s,界面处最大差异达到33.4 mV。由此说明,电极长度的增加会使得电池内部析锂触发时间提前。
图10不同电极长度的电池局部开始析锂时间
图11不同长度电池局部开始析锂时隔膜处φs-φe分布
进一步,对局部析锂开始触发时刻负极-隔膜界面电流密度分布分析。图12为电流密度iz分布情况,由图12(a)可知,长度为20 cm电池达到tonset=205 s时,iz, max为0.7 A/m2。随着电极长度增加,长度为40 cm电池开始析锂时,界面iz, max也随之增大到0.74 A/m2。长度为60 cm和80 cm,界面处iz, max分别为0.81 A/m2和0.9 A/m2,这也造成了尺寸增加后,电池内部提前达到析锂触发时刻tonset。随着长度的增加,电极区域温度差异增大和电流密度不一致性程度增大。
图12不同长度电池局部开始析锂时负极-隔膜处电流密度iz
图13为不同长度电极析锂量情况,即容量衰减率。在局部温度和电流密度多因素综合影响下,长度越长,析锂开始时间越早。
图13不同长度电极整体析锂程度
1.3.2 极耳位置对电池析锂影响极耳位置的设计将影响靠近极耳区域的电流密度和温度的分布,对局部析锂的发生存在一定影响。本工作选取了长度均为40 cm的具有3种不同极耳位置的电池进行分析,以探究极耳位置对各项电性能的影响,尤其是局部析锂。极耳位置设计如图14所示,分为I、II、III三种类型,并对其在0 ℃下1 C倍率恒流充电。不同极耳类型的电池局部开始析锂时间如图15所示。
图14 3种不同极耳位置电池结构
图15不同极耳类型的电池局部开始析锂时间
图16为3种极耳类型电池在局部开始出现析锂时负极-隔膜界面的固液相电势差分布情况。I类电池在达到析锂触发时刻tonset=193 s时,靠近极耳区域开始出现<0,该区域首先析锂,但底部的为8.67 mV,不一致性较大。然而,II类电池在tonset为201 s时靠近极耳区域先析锂,此时中部区域接近4.02 mV。III类电池tonset为221 s时极耳区域局部析锂,中部区域为3.07 mV,不一致性远低于I类,接近II类。
图16不同极耳位置电池局部开始析锂时隔膜处φs-φe分布
进一步对局部析锂开始触发时负极-隔膜界面电流密度iz分布进行分析。由电流密度分布图可知,3种极耳设计下的电池iz,max数值大小差异不大,如图17所示。其中,I类电池中界面处为0.13 A/m2,另外两种电池较小,II类电池为0.08 A/m2,III类电池则更小,仅为0.05 A/m2。说明III类电池在电流密度分布上更加均匀,也使得电池内部各区域产热均匀,温度差异更小。
图17不同类型极耳位置电池局部开始析锂时负极-隔膜边界处电流密度iz
极耳位置不同导致电极区域温度和电流密度不一致性程度有所差异,在多种因素的耦合下电池整体析锂程度也有所不同。如图18所示,I类电池和II类电池在温度、电流密度多种因素综合影响下析锂量几乎相同,析锂量达到3.77%。然而,III类电池在温度分布、电流密度分布不一致性要优于I和II类电池,充电截止时刻析锂量降低到3.14%,相对析锂程度降低16.7%。因此,III类电池将极耳置于长度方向轴线对侧将有利于减缓析锂程度。
图18不同极耳位置设计电池整体析锂程度Fig.
18Different lug positions to design the overall lithium precipitation degree of the battery
2 结论
本工作以P2D模型为基础,通过耦合产热模型,并在模型中加入了考虑可逆锂重嵌入机制的析锂副反应,建立了三维电化学热耦合析锂模型。通过多种方式获取模型参数后,对模型进行验证,验证结果表明了该模型在常温和低温下条件下可以较好地模拟电池端电压的变化,并且能定量描述在低温大倍率充电期间电池内部的析锂程度、温度分布等非均一现象。此外,通过仿真对电极尺寸、极耳位置等因素的分析,研究了结构设计对非均一析锂的影响。不同电极尺寸的分析结果表明,电极长度增加会致使电极区域温度差异增大和电流密度不一致性程度增大,综合影响下使电池析锂时间略有提前,但对电池总体析锂程度影响较小。
不同极耳位置的分析结果表明,当极耳位置处于电极长度方向的轴线对侧处时,电池温度和电流密度分布更加均匀,可以延缓负极析锂起始时间,能够有效缓解负极析锂,相对析锂程度降低了16.7%。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近期,多座储能电站获最新进展,北极星储能网特将2025年7月14日-2025年7月18日期间发布的储能项目动态整理如下:蓝晓科技陕西西安用户侧智慧储能项目正式投运7月11日,蓝晓科技用户侧智慧储能项目正式投运。该项目位于西安市高陵区渭阳九路999号蓝晓科技新材料有限公司园区内部。储能总装机0.875MW/1.7
广东灵活调节能力现状及提升路径分析——《新型电力系统下广东灵活调节能力分析及提升举措》摘编王雪辰/整理(中能传媒能源安全新战略研究院)在构建新型电力系统进程中,电力系统的运行特性发生了根本性的变化。新能源大规模接入电网,导致电力系统的灵活调节需求急剧攀升,传统电力系统的灵活调节能
作者:刘佳辉卞伟翔李大伟单位:上海理工大学引用本文:刘佳辉,卞伟翔,李大伟.锂电池石墨复合电极力-电耦合性能原位测量分析[J].储能科学与技术,2025,14(6):2240-2247.DOI:10.19799/j.cnki.2095-4239.2024.1149本文亮点:1.使用石墨电极来进行原位测量实验设计与分析,开发原位测量手段对复合石墨电极
北极星储能网获悉,7月18日,工信部公示了第397批《道路机动车辆生产企业及产品公告》新产品,包括一款特斯拉新能源汽车,应该为Model3+“最长”续航版,预计最早9月上市。公告显示,该款车搭载的储能装置种类为三元锂离子电池,生产企业为爱尔集新能源(南京)有限公司。据了解,2019年8月,特斯拉曾
7月16日,第三届中国国际供应链促进博览会在北京开幕,会上,亨通集团新材料产业以其强大的创新实力成为焦点,展示了包括低氧/无氧铜材质的铜杆、铜丝、导体及电磁线等在内的一系列前沿产品。这些产品广泛应用于新能源、电子、电力、5G、通讯、汽车和半导体等多个领域,充分体现了“中国智造”在新材料
近日,在河北省承德市围场满族蒙古族自治县老窝铺乡石人梁村,国网冀北电力有限公司首个百千瓦级“水光储”微电网通过10千伏御道口线路西山分支线路并入电网,投入运行。10千伏御道口线路西山分支线路供电区域位于配电网末端,负荷分散,为单电源长距离供电。受地理环境限制,常规的电网改造升级方式难
7月16日,中国电力企业联合会电动交通与储能分会发布《电化学储能行业发展报告2025》(简称《报告》)。其中显示,2024年电化学储能运行效率与商业价值实现“双突破”,平均转换效率达88.75%。《报告》分析了9个省份独立储能运营模式,以江苏为例,“充放电价差+顶峰补贴+容量租赁+储能补贴”模式,50M
北极星氢能网获悉,近日,由北方稀土贮氢公司主导开发的氢能电动两轮车正式上线。记者走进该公司,率先一睹这款新车的独特风采。在北方稀土贮氢公司办公楼门前,一排排氢能电动两轮车整齐列队。蓝绿相间的车体色彩明快亮眼,车筐里的橙色头盔尤为醒目,车身一侧的包钢集团标志格外引人注目。车头嵌入的
磷酸铁锂赛道,韩系电池三巨头“攻势渐起”!起点锂电注意到,继LG新能源、三星SDI后,SKOn也公布了其在磷酸铁锂电池端的最新布局,剑指北美储能系统市场。01、下订磷酸铁锂,是蹭热度还是布局提速?眼看LG新能源、三星SDI频频发力磷酸铁锂,SKOn终于按耐不住,一纸合作下定磷酸铁锂材料。7月15日消息
7月15日凌晨三时许,由东方旭能(山东)科技发展有限公司担任PC总承包的江苏省淮安市洪泽区润湖新能源50MW/100MWh储能电站项目成功并网,这不仅标志着淮安市迎来重大新能源基建发展成果,同时也体现出东方旭能为区域能源产业的可持续发展注入了强劲力量,在贯彻绿色低碳转型的道路上又迈出坚定的一步。
北极星售电网获悉,7月16日,江苏南通市政府办公室关于印发南通市加快推进生产性服务业高质量发展行动方案(2025—2027年)的通知。文件明确,探索低碳节能服务发展路径。积极引进国内外权威认证组织在通设立分支(合作)机构,提供“一站式”涉碳类认证和咨询服务,推动重点产品碳足迹的国际衔接互认
在全球轨道交通产业加速电动化转型的浪潮下,动力电池系统的安全性能已成为制约行业高质量发展的核心要素。2025年4月发布的《轨道交通动力电池系统安全设计规范T/CIET1206#x2014;2025》团体标准,自落地实施近三个月以来,正以系统性的安全框架重塑行业发展格局。高泰昊能作为核心参编企业,凭借其深厚
充电宝已成为大家不可或缺的数码“伴侣”,近期,因充电宝频发安全问题,引发公众广泛关注。7月7日,一段监控视频在网上流传。监控画面显示,某办公室里一款充电宝正充电时,突然发生爆炸并起火。伴随巨响,浓烟弥漫,所幸男子反应快,及时躲避。目击者告诉媒体记者:“充电宝是同事去年买的,不是召回
车网互动需要提升系统支撑能力,仍面临硬件革新、平台完善、运行安全等多重挑战。从用户体验角度看,车网互动技术包括智能有序充电和双向互动放电两大环节。目前业内认为,智能有序充电技术相对成熟,反向放电能力提升仍面临挑战。从整体运营角度看,V2G技术的关键突破点有两个:一是电池的耐久性,直
西班牙首都马德里附近一家锂电池回收工厂4日发生火灾,至6日仍未扑灭。据报道,火灾导致两人受伤。据德新社报道,这家工厂位于马德里东北方向约50公里的一个工业区,消防员6日仍在奋力灭火。几起爆炸引燃大火,爆炸原因尚不清楚。由于火灾导致有毒烟雾释放,当地政府通过手机向周围5个社区大约6万名居
北极星储能网获悉,6月25日,工信部发布关于开展2025年新能源汽车安全隐患排查工作的通知。其中动力电池系统安全排查方面,要求企业应协同动力电池生产企业,联合排查动力电池等关键系统运行状态异常(如电池温度异常、电压异常、电流异常和绝缘异常等)情况,对电池的实际使用情况进行检查,采取有效
7月1日,慈溪市发展和改革局对舒孝瑜委员与王天慧、邵倩倩代表提出的《关于促进慈溪市工商业储能领域实现更安全、多元化发展的提案》做出答复。其中指出,今年开展“十五五”慈溪市能源发展规划,也将秉持上述思路,凸显对工商业分布式储能领域的关注力度。同时,市供电公司也充分考虑了储能项目的发展
电动自行车已经不能进楼入户了,难道今后充电宝也要步其后尘?近日,民航局新规实施后,大量无“3C认证”的充电宝被机场拦截。自2025年6月28日起,乘坐境内航班的旅客禁止携带没有3C标识、3C标识不清晰、被召回型号或批次的充电宝上飞机。此规定源于今年以来旅客携带的充电宝等锂电池产品机上起火冒烟
6月25日,在发生火灾近三周后,汽车运输船“MorningMidas”号最终在当地时间6月23日16:35左右,沉没于水深约5000米的太平洋水域。经打捞运营商ResolveMarine表示,“恶劣天气和海水逐渐渗入船体,加剧了最初火灾造成的损害,最终导致该船沉没。”本月初,一艘载有3000多辆汽车的轮船在太平洋起火,当时
北极星电池网获悉,6月26日,为切实保障航空运行安全,民航局发布紧急通知,自6月28日起禁止旅客携带没有3C标识、3C标识不清晰、被召回型号或批次的充电宝乘坐境内航班。据悉,今年以来,旅客携带的充电宝等锂电池产品机上起火冒烟事件多发。近期多个头部品牌充电宝厂家因电芯存在安全风险对多批次产品
回首储能行业刚被抽离政策拐杖之初,整个市场不乏犹疑、焦虑的声音。一方面,以低质产品进行低价竞争得以存活的储能企业陆续黯然离场;另一方面,储能在趋向市场化后更加聚焦价值重构,储能企业也在兼顾安全、效率与成本中愈发“求真”,迸发活力。价值导向下,直面储能安全2024年工信部发布的强制性国
近日,由Intertek天祥集团(以下简称Intertek)与思格新能源联合筹备的《工商业储能全方位安全防护解决方案白皮书》(以下简称白皮书)正式对外发布。随着全球能源转型的加速,工商业储能作为提高能源利用效率、优化电力供需的关键手段,市场规模迅速增长。据统计,2024年全球工商业储能新增装机约为12
今年3月,国家发展改革委等四部门联合印发《关于公布首批车网互动规模化应用试点的通知》,正式确定上海市、常州市、广州市等9个城市为首批试点城市,同步公布30个试点项目。《能源评论》派出多路记者,前往济南、成都、广州、深圳等地,实地探访车网互动项目,了解规模化试点的进展。在济南,我们来到
北极星储能网获悉,7月7日,星源材质向港交所递交了公开发行H股并在港交所主板挂牌上市的申请。星源材质成立于2003年,是电池隔膜龙头代表企业。公司的创始人、董事长陈秀峰教授毕业于华中科技大学,并在2023年9月获委任为华中科技大学能源与动力工程学院的教授,为期三年。招股书显示,是业内首家实现
作者:贺瑞璘1张通1吴镓淳1王朝阳3邓永红1张光照1许晓雄2单位:1.南方科技大学材料科学与工程系2.南方科技大学创新创业学院3.华南理工大学材料学院引用本文:贺瑞璘,张通,吴镓淳,等.骨架型材料与设计在高比能锂电池中的应用研究进展[J].储能科学与技术,2025,14(5):1758-1775.DOI:10.19799/j.cnki.2095
为精准掌握产业发展动态,科学制定产业政策,推动经济高质量发展,大同市发改委近期积极行动,全力配合省发展改革委做好相关产业产能调查及有关领域摸底调查工作,为产业规划与发展提供坚实数据支撑。根据国家发改委、省发改委工作安排,大同市发改委精心组织、周密部署,组织各县(区)对本地汽车及汽
北极星储能网获悉,6月30日,东峰集团在投资者互动平台上表示,公司积极优化产业布局,在新能源动力电池、储能电池材料领域布局基础上,积极延伸产业链,布局半固态、固态电池隔膜及基膜等相关电池核心材料,产品涵盖复合铜箔、复合铝箔、泡沫铜以及半固态电池功能膜材料、固态电池电解质复合膜和电解
北极星储能网获悉,6月28日,星源材质马来西亚工厂(一期)生产基地正式建成。该项目是东盟区域首个锂电池隔膜工厂,总投资近50亿人民币,建成后将成为年产20亿平方米湿法及涂覆隔膜的“超级工厂”。星源材质称,东盟基地的建成为公司构建了独立的海外定价体系,意味着未来星源材质的海外产品将不再受
北极星储能网获悉,6月27日,恩捷股份披露投资者关系活动记录表,回答投资者有关公司业务布局的问题。在半固态电池隔膜业务布局方面,公司下属控股子公司江苏三合电池材料科技有限公司具备半固态电池隔膜量产供应能力,公司在积极开拓市场。在全固态电池材料布局方面,公司下属控股子公司湖南恩捷前沿
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
全球供应链加速重组的背景下,随着中国锂电电池、材料海外产能开始释放、供应链协同效应显现,日韩电池企业亦在加速其技术路线与市场策略的调整。两种趋势的交汇,正开启全球动力电池市场的新一轮竞争。一个关键变化发生在2024年。根据公开数据,宁德时代在海外市场(非中国)的占有率首次超过了韩国的
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
北极星储能网获悉,5月12日,东峰集团在投资者互动平台上表示,公司按照“转型提速、重点投入、优化布局”的经营理念,持续加大在新型材料及I类医药包装领域的资金投入与资源布局。在新型材料业务方面,公司通过不断提升自主研发能力以及与行业内领先企业合作,开发多款新产品,在新能源动力电池、储能
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!