登录注册
请使用微信扫一扫
关注公众号完成登录
图1 (a)“嵌入-吸附”机理;(b) 拉曼光谱
1.2 “吸附-嵌入”机理
“嵌入-吸附”机理随后受到许多研究者的质疑,根据此机理,平台区比容量与材料孔隙应呈正相关,但根据各种文献可知,通常碳化温度的升高使得材料表面孔隙减少,反而使得平台区容量增加,有悖于“嵌入-吸附”机理,因此“嵌入-吸附”机理不能解释某些实验现象。2012年,Cao等提出“吸附-嵌入”机理。在斜坡区(高电压区域)钠离子吸附在材料孔隙中,平台区(低电压区域)钠离子嵌入碳层间,与“嵌入-吸附”机理相反[图2(a)]。同时,通过理论计算得出钠在碳层嵌入的层间距应大于0.37 nm。金前争针对硬碳类微球(HCNSs)储钠机理的研究证明了此机理的可靠性。对不同温度下热解制备的硬碳进行循环伏安法测试。充放电曲线主要分为两部分,分别对应着平台区(小于0.2 V)和斜坡区(0.2~1.25 V)。同时可以看出在电压0.01~0.2 V存在一对氧化还原峰,对应着平台区。根据伏安特性曲线可知,随着碳化温度及时间的增加,氧化还原峰变得更加尖锐,而高电压区域面积在不断减小。对在1200 ℃下制备的硬碳不同电荷状态进行非原位XRD测试,当电压放至0.2 V时电极(002)峰的峰位未发生变化,放电至0.01 V时发生偏移,又当充电至3 V时,(002)电极峰的峰位未发生偏移,此现象说明在低电压平台钠离子脱嵌引起硬碳结构的变化[图2(b)]。通过以上现象可以说明此样品符合“吸附-嵌入”机制,且随着热解温度的增加,样品表面缺陷减少,斜坡区吸附容量在减少。同样,Wang等通过原位透射电镜(TEM)监测硬碳钠化中实时体积变化,在中后期,250~500 s的观测可以看出体积膨胀的跳跃变化[图2(c)],钠的嵌入相比于吸附将导致更大的体积膨胀,由此,可以证明嵌入发生在吸附之后。同样,Alvin等通过非原位X射线衍射(XRD)、非原位固态核磁共振(NMR)、恒流恒压法和恒电流间歇滴定技术(GITT)与理论观察到的离子嵌入机制相关联,证实平台区嵌入的储钠形式。Chen等利用充放电测试、循环伏安法测量(CV)和恒电流间歇滴定技术(GITT)比较研究了HC上的Na嵌入反应和石墨上的Li嵌入反应的电化学行为,硬碳上的储钠特性与石墨上的储锂特性非常相似,但与硬碳上的储锂特性有很大差异,表明在硬碳平台区的储钠反应通过嵌入进行,类似于锂嵌入石墨烯层。
图2 (a)“吸附-嵌入”机理;(b) 不同电势下XRD;(c) 硬碳在钠化过程中的体积变化以及钠吸附和嵌入
1.3 其他储钠机理
以上机理有大量文献证明,但某些实验现象是以上两种机理所不能解释的。同时随着试验方法在技术层面的发展,无论是直接还是间接证明,研究者发现了其他储钠方式,如“吸附-纳米孔填充”机理、“吸附-嵌入和纳米孔填充”机理等。Au等对葡萄糖进行热解,制备一系列硬碳。结合材料分析及电化学表征证明,在斜坡区,钠储存和连续发生在层间嵌入及缺陷孔隙表面吸附同时进行,而在平台区钠填充在孔隙中。Cai等通过不同温度下碳化树脂纳米纤维制备一系列可调层间距的硬碳纳米纤维。优化后的样品具有短程石墨层及足够大的层间距供钠脱嵌。利用原位X射线衍射和拉曼表征表明,斜坡区钠在嵌入的同时伴随着表面缺陷吸附,而平台区为孔隙填充。Chen等分别使用葡萄糖和葡萄糖酸镁作为碳源合成了两种硬碳材料探究其储钠机理,通过原位XRD、非原位拉曼光谱和固体核磁共振技术以监测钠化过程中的结构演变。实验结果表明,硬碳的平台区容量由层间插层和微孔填充同时贡献,两者的比例随硬碳的微观结构而变化。理论计算结果进一步验证了钠离子可以以合适的层间距嵌入到类石墨片中,并以合适的直径填充微孔。基于这些结果,提出了一种依赖于微观结构的钠存储机制,即“吸附-嵌入/填充”混合机制。Jiang等首次在硬碳储钠机理中引入溶剂共插层机理,提出“吸附-共插层机理”。通过原位XRD和非原位TEM和XPS表征对此机理进行证明。同时,引入的溶剂共插层使得硬碳材料在高电流密度下,平台区容量保持良好。Escher等通过原位电化学膨胀法(ECD)提供的有关电池循环期间电极膨胀及收缩信息发现,在接近截止电位时,电极膨胀再次增加,而电位曲线没有明显变化,确认钠储存通过三步机制发生,即斜坡区为钠嵌入,而在平台区为孔隙填充和电镀。
硬碳负极材料的复杂结构使得在斜坡区和平台区的储钠机理仍存在极大争议。随着技术的发展,诸多储钠机理被提出并直接或间接得到证明,这为材料在层间距、缺陷等方面的改性提供理论依据。
2 硬碳面临的问题及解决方法
2.1 硬碳存在的问题
硬碳因来源广泛、性能优异而易于实现商业化应用,但仍面临着首次库仑效率低、倍率性能差等问题。硬碳具有大的比表面积和大量缺陷,从而造成低的首次库仑效率。而首次库仑效率低反映了电池在首次充放电过程中发生了大量的不可逆反应,其中主要包括再循环过程中电解液分解形成电解质界面膜(SEI)对部分钠离子的消耗和由高比表面积、孔隙、缺陷和官能团引起的其他不可逆反应的结果。在半电池中,钠的含量是过量的,无需担心钠的消耗,在全电池中,钠含量的消耗直接影响电池的容量。因此,减小硬碳负极材料的比表面积、减少缺陷及闭合部分孔隙是提高首次库仑效率的关键所在。倍率性能反映出负极材料内部动力学性能,其中包括电子的导电性和离子的扩散速率。普遍认为,相对于钠离子在硬碳材料层间的脱嵌,在材料表面缺陷的吸/脱附相对来说更容易。同时,增大层间距亦有利于钠离子的脱嵌。丰富的缺陷及较大的层间距都有利于硬碳倍率性能的提升。
2.2 优化方法
针对硬碳材料所面临的问题及结合硬碳储钠机理可以看出,合理控制硬碳负极材料缺陷和层间距及减小表面积是提升材料化学性能的有效措施。
杂原子掺杂是研究较多也是较成熟的一种控制缺陷及层间距的方法。可以通过N、P、S、O等原子掺杂为材料提供表面缺陷及提高导电性,从而提高其倍率性能及比容量。Chen等以淀粉为原料通过热解制备N、P共掺杂多孔碳。N、P的掺杂为捕获钠离子提供更多的活性位点同时一定程度上增大了样品表面积。优化后的样品NPPC-2在50 mA/g电流密度下首次放电及充电容量分别为988.7和423.2 mAh/g[图3(b)]。在100 mA/g电流下,100次充放电循环试验可逆容量达到311.2 mAh/g,相对于未掺杂前其可逆容量有明显的增加。0.05~10 A/g不同电流密度循环后恢复至0.05 A/g电流密度循环,其可逆容量有较大回升,较循环前容量衰减较小[图3(a)]。在5 A/g电流密度下充放电循环1000次,其可逆容量仍达到126.9 mAh/g[图3(c)],反映出其良好的倍率性能及较大电流下循环稳定性。原子掺杂使得石墨层间距变大及更多表面缺陷,增大钠离子传输速率,提高其倍率性能。虽其拥有大的可逆容量,但首次库仑效率(42.8%)较低,高的可逆容量牺牲了一定量的首次库仑效率。杂原子掺杂已被证明可以有效地提高倾斜区储钠能力,但与首次库仑效率发生冲突。Xie等提出了一种杂原子构型筛选策略,通过对磷酸盐处理的碳引入二次碳化过程,以去除不可逆的杂原子构型,但保留可逆的杂原子构型和自由基,实现高倾斜容量(250 mAh/g)和首次库仑效率(80 %)。
图3 NPPC和PC储钠能力 (a) 倍率性能;(b) NPPC-2在50 mA/g电流密度下充放电曲线;(c) NPPC-2在5 A/g电流密度下长循环性能
高碳化温度可提高碳基负极材料石墨化程度,即碳化温度增加,样品缺陷浓度随之减少。因此,控制碳化温度不乏是一种较简单制备高性能硬碳的方法。Tonnoir等通过对单宁热解制备一系列硬碳,根据拉曼光谱显示可知,D波段和G波段强度之比随热解温度不同而变化,其比值与样品缺陷密度密切相关。随后根据氮物理吸附法及氢吸附得出随热解温度的升高孔隙体积在减小,而超微孔(尺寸小于0.7 nm)数量在增加。通过对不同样品组成半电池进行测试,在较高温度1600 ℃下制备的硬碳,18.6 mA/g电流密度下充放电循环获得最高可逆容量306 mAh/g和87%的高首次库仑效率。随着制备样品温度的升高,可逆容量及首次库仑效率有所改善,但也导致层间距略微有所减小,不过对样品整体性能影响不大。Li等利用再生且经济的废软木材料通过简单的高温碳化过程合成分层多孔硬碳材料。通过骨架密度测试结合小角X射线散射分析(SAXS)用于获得闭合孔隙信息。基于孔隙信息与硬碳电化学性能之间的详细相关性分析,提高热解温度可减少开孔(与初始容量损失有关)和增加闭孔(与平台容量有关)。在热解温度为1600 ℃制备的硬碳,表现出高达360 mAh/g的高可逆放电容量和81%的高首次库仑效率。
模板法是控制材料孔隙结构的有效策略,通过MgO、沸石、二氧化硅等模板法调节硬碳表面缺陷及孔径大小,从而改善其倍率性能。通过不同的模板主体可得到不同的孔隙结构。Kamiyama等利用MgO模板法合成高容量硬碳,其可逆容量达到478 mAh/g及88%的首次库仑效率。在250 mA/g电流密度下,充放电循环其可逆容量保持在400 mAh/g,具有较好的循环性能。模板法具有较强控制材料孔隙能力,但合成过程较复杂,需要进行多次洗涤,从而导致合成周期较长,不利于商业化推广。
软碳具有更多的有序结构及更少的缺陷,因此可利用软硬碳的互补性使两者结合,开发出低成本及高性能的负极材料。Xie等用滤纸作为纤维素硬碳前驱体和树脂作为软碳前驱体,以不同比例合成软硬碳复合材料。采用氮物理吸附法和小角X射线散射(SAXS),研究树脂的添加对表面积及孔隙的影响。结果表明,随着软碳含量的增加,样品表面积随之减小。软硬碳之间的协同作用,导致软碳堵塞硬碳部分开孔以减少材料表面积,从而减少形成SEI膜时钠离子的消耗,同时碳化温度升高使得有序结构增多。优化后的软硬碳复合材料,在30 mA/g电流密度下充放电循环最高可逆容量为282 mAh/g及高达80%首次库仑效率[图4(a)、(b)]。随着软碳过多的占比,使复合材料闭合孔隙增多,其首次放电容量也随之降低。在30~1200 mA/g电流密度循环后恢复至30 mA/g电流密度循环,其容量与前5次循环后无明显衰减,有良好的稳定性。但随着软碳占比的增大,其倍率性能变差[图4(c)、(d)]。同时,复合电极材料在150 mA/g电流密度下经过100次循环,相比于原始材料较稳定[图4(e)、(f)]。He等提出在硬碳电极上涂覆软碳涂层的策略,以阻碍硬碳上缺陷和含氧基团的形成。最优样品在20 mA/g电流密度下可逆容量达到293.2 mAh/g,首次库仑效率高达94.1%。通过电化学阻抗谱表明优化后的材料具有较低的SEI层电阻,动力学性能得到改善。20 mA/g电流密度下循环100次容量保持率达到99%,具有优异的循环稳定性。
图4 (a), (b) 所有生成的硬-软碳复合材料在30 mA/g电流密度下的初始充放电曲线;(c), (d) 所有得到的硬-软碳复合材料的倍率性能;(e), (f) 所有硬-软碳复合材料在150 mA/g电流密度下循环性能
SEI膜的形成对电池容量及首次库仑效率的影响较大,人工合成SEI膜来代替在充放电循环过程中所生成的SEI膜,是一个较理想的方式。但SEI膜形成机理和界面动力学行为是其所面临的难点,高效的SEI的研发仍有很长一段路需要走。而负极材料可通过表面涂层进行调节,减少电解液与负极材料的接触,具有SEI膜的作用。Lu等通过原子层沉积,合成超薄Al2O3涂层硬碳材料(图5)。Al2O3涂层起到SEI的作用,抑制电解液的不可逆反应。其可逆容量达到355 mAh/g,首次库仑效率达到75%,而未添加涂层的硬碳其首次库仑效率为65%[图6(a)、(b)]。合成材料在50 mA/g进行50次循环,其容量高达291.4 mAh/g。在50 mA/g循环150次,可逆容量保持率仍达到90.7%[图6(b)、(c)]。通过电化学阻抗谱可以看出,合成超薄Al2O3涂层硬碳极化内阻小于硬碳极化内阻。Al2O3涂层不仅抑制电解液的分解,同时降低界面电阻,提高其动力学性能。Wang等通过原子层沉积将超薄Al2O3沉积在生物质衍生的硬碳上。在50 mA/g电流密度下,原始样品可逆容量为259.3 mAh/g和首次库仑效率为67%,优化后可逆容量及首次库仑效率分别为289.4 mAh/g和72%,也在一定程度上抑制SEI膜的形成。
图5 Al2O3在硬碳电极表面沉淀示意图
图6 (a) 在20 mA/g电流密度下涂有不同循环Al2O3的硬碳电极初始充放电曲线;(b) 涂有不同循环Al2O3的硬碳电极在50 mA/g下的循环性能(前5个循环中的电流密度为 20 mA/g);(c) SHC-ALD0和SHC-ALD20在电流密度为50 mA/g下的循环性能(在最初的5个循环中电流密度为 20mA/g)
针对硬碳材料本身的改性得到大量研究,但硬碳材料所面临的首次库仑效率和倍率性能问题无法同时得到改善。而电解液的分解是硬碳首次库仑效率低的主要原因,因此,优化电解液是提高首次库仑效率的有效方法。醚类电解液因其与碳基材料有良好的相容性而得到广泛研究。理想的SEI膜应是较薄且稳定,即初始循环消耗的电解质和碱离子较少,一旦SEI膜形成,它将作为钝化层,在连续的循环中防止电解质和碱离子的进一步消耗。醚类电解液相比于酯类电解质在负极表面能生成更薄更稳定的SEI膜。Seh等首次报道了一种简单的醚基电解质六氟磷酸钠,在没有任何添加剂和对阴极材料进行表面涂层情况下,300次循环中实现99.9%的高平均库仑效率,归因于醚类电解质在阴极上诱导形成均匀SEI膜。Xiao等研究显示四甘醇二甲醚(TEGDME)和碳酸盐电解质中的硬碳在低电流密度(50 mA/g)容量及容量保持率相差不大,但硬碳在1000 mA/g电流密度下测试时,在TEGDME中的比容量约为150 mAh/g,是碳酸盐中值(50 mAh/g)的3倍,进行1000次循环容量保持率约为85%,而在碳酸盐中为70.2%[图7(a)、(b)],归因于硬碳在TEGDME电解液中形成更薄且更稳定的SEI膜。同样,Hirsh等[41]在探讨硬碳在常规碳酸盐电解质和高性能醚基电解质中的性能和机制差异中表明,在醚基电解质中可实现更高的首次库仑效率、更高的倍率性能和优异的循环性能。同时,通过低温透射电镜、SEM、EDS和XPS以三种不同的速率探索了SEI的形成,结果显示,在醚基电解液中生成更薄、更稳定、更均匀的SEI膜[图7(c)、(d)],使硬碳在不同电流密度下具有优异的电化学性能。Dong等使用制备的硬碳纳米球报道了醚基电解质中独特的溶剂化钠和钠共嵌入机制,这种独特的机制避免了缓慢的去溶剂化过程,从而增强了钠的储存动力学。此外,通过低温透射电镜和深度剖析X射线电子能谱,观察到在醚基电解质中形成具有高无机比例的薄SEI膜,溶剂化钠在醚电解质中的较高扩散系数以及具有较低界面阻抗的较薄SEI膜进一步增强了动力学。醚基电解质的贡献,使得半电池具有优异的倍率性能(10 A/g电流密度下比容量为214 mAh/g,具有120 mAh/g的超高平台容量)和高首次库仑效率(1 A/g电流密度下为84.93%)。普遍认为,低结晶度、高孔隙率和大表面积的碳质材料通常具有较高的放电能力,但由于表面SEI不完全且不稳定,它们存在超低ICE的严重问题。Zhang等报道了几种不同的高表面积硬碳材料,通过使用醚基电解质改善了首次库仑效率。其中还原氧化石墨烯,其首次库仑效率可高达74.6%,并伴随着509 mAh/g的高可逆比容量,其归因于在醚基电解质中形成的薄而紧凑的均匀和离子传导的SEI膜。Chen等合成的具有高表面积的介孔空心碳球,在醚基电解质中20 A/g电流密度下具有187.6 mAh/g可逆容量,同时具有86.2%的高首次库仑效率。通过分子动力学模拟和分子表面静电势计算表明,这种电解质能够增强溶剂化钠传输动力学,并在碳阳极表面具有适当的静电相互作用。电解液的浓度同样对钠离子电池性能有很大的影响,可通过控制电解液浓度进行硬碳材料性能的优化。Jin等报道了一种用于高度可逆的钠离子电池的不易燃的局部高浓度电解质,通过使用低温透射电子显微镜,发现在电极表面形成超薄(3 nm)和稳定的界面层。硬碳表面上形成的富含无机物的固体电解质界面最大限度地减少了硬碳与电解质之间的不良反应,实现了高达97.8%首次库仑效率。Li等提出了一种超低浓度钠离子电池电解质,不仅降低了成本而且扩大工作温度范围,低黏度和较小的腐蚀风险(较少的HF侵蚀)将有助于提高低温和高温下的界面润湿性和库仑效率。此外,形成的具有优异动力学的稳定的SEI/CEI使钠离子电池在极端温度下稳定运行。添加电解质添加剂作为SEI膜的成膜剂,亦是改善钠离子电池性能的有效方法。Bai等通过加入少量的酯类添加剂作为SEI成膜添加剂添加到醚类电解质中,在硬碳电极材料上构建保护层。在添加少量酯类添加剂的电解质(DME-0.5%VC)中,初始容量为211 mAh/g的硬碳负极在1 A/g的高电流密度下进行2000次循环,容量保持率高达95.6%,在未添加酯类添加剂的电解液(DME)中容量保持率仅有72.3%[图7(f)]。首次库仑效率从纯DME基电解质的84.7%下降到DME-0.5%VC电解质的83%[图7(e)]。这归因于VC辅助SEI薄膜的逐渐形成,在接下来的循环中,DME-0.5%VC电解质中的库仑效率达到近100%,表明VC辅助的SEI薄膜在长循环期间稳定地维持电化学可逆性。
图7 (a) TEGDME中硬碳在不同电流密度下循环性能;(b) 碳酸盐中硬碳在不同电流密度下循环性能;(c) 通过冷冻透射电镜成像PC电解质中以C/3的速率循环1次后SEI膜厚度;(d) 通过冷冻透射电镜成像TEGDME电解质中以C/3的速率循环1次后SEI膜厚度;(e) 不同电解质中硬碳充放电曲线;(f) 基于DME和DME-0.5%VC电解质的硬碳在电流速率为1A/g下的循环性能
3 结论
硬碳因其独特的结构、低成本、高容量、来源丰富等成为最具商业化潜力的负极材料。本工作基于硬碳材料的嵌入、吸附及纳米孔填充三种不同储钠过程,系统介绍了“嵌入-吸附”“吸附-嵌入”和其他多种形式的复合储钠机理。随后,分析硬碳材料所面临的倍率性能、首次库仑效率等方面问题,通过对负极材料本身结构和电解液优化来改善其倍率性能和首次库仑效率。但硬碳的首次库仑效率、倍率性能、储钠能力等往往相互冲突,所以对材料的改性应注重取舍,进行整体性能的优化。对于硬碳负极材料研究总结与展望如下。
(1)表征技术的发展使硬碳储钠机理的探索取得重大进展,提出诸多储钠机理,但对于硬碳储钠方式仍存在争议,尤其对低压平台区的储钠机制存在较大争议,有待进一步地研究。一种明确而清晰的储钠机制将有效促进ICE的优化,并指导先进硬碳负极材料的设计。
(2)微观结构和杂原子掺杂对硬碳性能有着显著的影响。杂原子掺杂使缺陷浓度增大,对于倾斜区容量及离子扩散有着积极的作用,但对首次库仑效率有不利影响。增大层间距和密集的封闭纳米孔隙以延长低压平台区容量是一种有效方式。
(3)设计含有丰富的可逆钠贮存活性位点和缩短Na扩散路径的特殊纳米结构碳材料,提高其倍率性能及比容量,同时探索优化电解液和添加剂,以形成更薄、更稳定、更均匀的SEI膜提高初始库仑效率。
(4)钠枝晶的形成对电池的安全性及循环寿命存在较大隐患,需要进一步研究和预防。
(5)开发原料丰富的生物质基硬碳材料,获取一致性好、低缺陷、低表面积、低成本硬碳,利于商业化推广。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
南网储能公司储能科研院20MW/40MWh级钠离子电池储能系统示范工程并网性能测试服务、应对碳关税壁垒的新型储能产品碳足迹监测溯源技术及碳抵消策略研究中标结果公告(招标编号:CG0200022002032266)中检西南计量有限公司获得了“20MW/40MWh级钠离子电池储能系统示范工程并网性能测试服务”。
随着储能的应用场景越来越多样,储能的生命力也更“鲜活”。机遇常常伴随挑战,储能领域也正经历着从“价格竞争”向“价值回归”的蜕变阵痛之中,储能产品的安全与效率面临更严峻的考验。01、新挑战、新机遇、新市场2025年4月,欧洲一场大规模停电使西班牙、法国、葡萄牙和德国等多个国家的医疗、交通
6月11日,全球新能源顶级盛会SNEC2025在上海国家会展中心璀璨启幕!易事特集团以“AI+新能源,易启无限可能”为主题,携领先的风光储充钠全场景解决方案盛装亮相(展位号:4.1H馆A130)。展台首日人气爆棚,成为全场焦点,实力彰显行业标杆风范。全域融合:AI驱动能源全链路变革在构建新型电力系统的关
6月11日,全球最具影响力的国际化、专业化、规模化光伏盛会“SNEC第十八届国际太阳能光伏与智慧能源大会暨展览会”于上海如期拉开帷幕。晶澳科技以“光储赋能智慧零碳”为主题盛装亮相6.2H馆B190展位。重磅新品揭晓、大型供货协议、多轮战略签约、行业首张认证等高能表现,持续掀动展位人气,收获空前
日前,《阳泉市能源领域碳达峰实施方案》印发。方案提出,锚定2060年前实现碳中和的远景目标,按照力争2030年前实现碳达峰目标进行安排部署。关于印发《阳泉市能源领域碳达峰实施方案》的通知各县(区)人民政府、高新区管委会,市直有关单位,各有关企业:为全面贯彻落实市委、市政府关于碳达峰、碳中
文|中关村储能产业技术联盟根据CNESADataLink全球储能数据库的不完全统计,2025年5月,国内新增投运新型储能项目装机规模共计6.32GW/15.85GWh,同比+193%/+228%。其中表前储能新增装机6.17GW/15.38GWh,同比+213%/+248%;用户侧储能新增装机150MW/473MWh,同比-19%/+14%。相较去年同期,一季度新增装机
特朗普当前推出的激进且混乱的贸易政策,已给美国蓬勃发展的电池储能行业带来了诸多问题。行业分析师对依赖进口的电池储能系统制造商未来发展前景持谨慎态度,很多储能项目开发商也推迟了投资。分析师和企业内部人士称,由于进口关税的长期走向尚不明朗,在全球供应链重新达到平衡之前,电池储能行业在
6月6日,阳泉市能源局关于印发《阳泉市能源领域碳达峰实施方案》的通知,通知指出,大力推进风光新能源建设。充分利用各类国土空间资源,统筹优化布局,梳理全市风光资源现状及开发潜力。坚持集中式与分布式开发并举,全面推进风电、光伏发电大规模开发利用和高质量发展,逐步带动新能源产业链延伸发展
“储能市场化”这一美好愿景,终于将照进现实、加速落地。但就当下而言,其实大多数储能企业并没有做好应对市场化的准备,政策的迅猛推进将倒逼储能技术快速迭代,尤其将压力传导给电池管理系统BMS。在此过程中,以协能科技为首的BMS企业,有望成为储能变革新时代的探路先锋!多次“首”创!“三代”BM
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
6月5日,银川市人民政府关于印发《苏银产业园高质量发展实施方案(2025-2027年)》的通知,通知指出,聚焦硅基、碳基材料,高性能纤维材料等领域,依托20GW异质结单晶材料智慧工厂等项目,加速布局新一代异质结专用切片、电池、组件、钙钛矿等光伏材料产业。原文如下:银川市人民政府办公室关于印发《苏
“贵州造”新能源客车驶向“一带一路”,贵阳中安科技集团生产的电缆远销刚果等30余个国家,詹阳重工的极地全地形车驶向南极科考站,这些动辄数吨的“大块头”承载着贵州从代工配套向整装输出的跨越;而毕节明月工艺美术有限公司800余名工人精心雕琢“国际范”动漫手办,锦屏亚狮龙羽毛球占全球羽毛球市
北极星储能网获悉,近日,璞泰来接待机构调研,重点回应公司在固态电池领域的布局情况。在设备端,璞泰来主要围绕固态电池前段、中段工艺设备解决方案进行研发投入,截至目前已形成多业务线条的技术布局。具体来说,公司固态电池相关干法成膜设备、干法复合设备、湿法涂布机、锂金属负极成型设备、搅拌
北极星售电网获悉,中共昔阳县委关于十二届省委第四轮巡视整改进展情况的通报发布,其中提到,聚焦“五个一体化”,制定《昔阳县能源革命综合改革试点行动计划》,中煤白羊岭、黄岩汇煤矿智能化矿井改造全面完成,丰汇、乐安煤矿智能化掘进工作面加速推进,全县煤炭先进产能占比达68%。持续壮大新能源
北极星储能网讯:2025年1–4月,我国锂离子电池(下称“锂电池”)产业延续增长态势。根据锂电池行业规范公告企业信息和行业协会测算,1–4月全国锂电池总产量超过473GWh,同比增长68%。电池环节,1–4月储能型锂电池产量超过110GWh,新能源汽车用动力型锂电池装车量约184GWh。1–4月全国锂电池出口总
北极星储能网获悉。2025年6月13日,甘肃瑞志新材料有限公司年产6万吨锂电池石墨负极材料项目在甘肃武威民勤红沙岗能源化工工业集中区正式破土动工。作为湖南优热科技有限责任公司子公司,甘肃瑞志新材料此次示范项目是优热科技Y-ECO(易科)石墨化炉技术全球首个规模化应用案例。该项目总投资约14.2亿
中国锂电企业的全球化进程虽早已开始,但自2025年以来,这一进程已步入一个以“产能落地”为核心特征的全新阶段。其关键区别在于,此前的战略多为宣告、框架协议或开工建设,而当前则转变为海外基地实现规模化生产,并由此带动了从材料到设备全产业链的系统性海外布局。自2025年起,这一“落地”趋势在
2025年6月11日,在上海SNEC展会现场,海辰储能于“大步领先稳筑安全”产品安全技术分享会上,正式披露其∞Block5MWh储能系统全球首次开门燃烧试验的完整成果,包括试验全流程、技术细节及权威测试数据,并现场获颁国际权威机构ULSolutions的大规模火烧试验认证证书。现场颁发火烧试验认证证书据悉,此
“负极都使用金属锂。”近日,中国锂业巨头,赣锋锂业表示,其二代混合固态锂电池采用金属锂作为负极,开发的高比能电池能量密度达到420Wh/kg,循环寿命超过700次。随着固态电池的开发和量产,原先限制锂金属负极应用的锂枝晶问题正在被解决,新的技术不仅可以抑制锂枝晶的生长,固态电解质隔膜更可以
近日,云南省能源局发布关于云南省政协第十三届三次会议第0240号提案的答复,其中提出,加强“风光水储”基地规划建设。推进澜沧江、金沙江等流域“风光水(储)一体化”基地建设,打造李仙江、普度河等中小流域“风光水(储)一体化”基地,推进曲靖、红河等火电支撑区域“风光火储一体化”基地建设,
日前,《阳泉市能源领域碳达峰实施方案》印发。方案提出,锚定2060年前实现碳中和的远景目标,按照力争2030年前实现碳达峰目标进行安排部署。关于印发《阳泉市能源领域碳达峰实施方案》的通知各县(区)人民政府、高新区管委会,市直有关单位,各有关企业:为全面贯彻落实市委、市政府关于碳达峰、碳中
北极星储能网讯:6月6日,工信部发布拟推荐工业产品碳足迹核算规则团体标准推荐清单(第二批)公示。其中包括锂离子电池正极材料、负极材料、六氟磷酸锂等相关的碳足迹量化方法与要求储能相关标准。原文如下:为落实国务院办公厅《加快构建碳排放双控制度体系工作方案》(国办发〔2024〕39号),支撑建
今年以来,与电力相关的展会、峰会、研讨会大大小小不下百余场,大家除了热议《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》(发改价格〔2025〕136号)对市场带来的颠覆式影响,最有热度的是西班牙大停电对市场影响的诸多思考。毕竟,这是人类历史上高新能源比例场景下,一次措手不
北极星储能网获悉,6月16日,*ST同洲发布公告,宣布公司股票自6月17日开市起撤销退市风险警示及其他风险警示,股票简称由“*ST同洲”变更为“同洲电子”。撤销退市风险警示及其他风险警示后,*ST同洲股票交易价格日涨跌幅限制变更为10%。*ST同洲股票将于6月16日开市起停牌一天,于6月17日开市起复牌。
2025年6月11日,上海国际光伏储能展览会上(SNECPV+2025),三晶电气与亿纬锂能正式签署战略合作协议。双方就储能电芯达成了规模2GWh的项目合作意向,此次合作标志着双方在储能领域的技术创新与产业协同迈入全新阶段,通过整合三晶电气在储能系统集成领域的核心优势与亿纬锂能在储能电池研发的领先技术
北极星储能网讯:2025年1–4月,我国锂离子电池(下称“锂电池”)产业延续增长态势。根据锂电池行业规范公告企业信息和行业协会测算,1–4月全国锂电池总产量超过473GWh,同比增长68%。电池环节,1–4月储能型锂电池产量超过110GWh,新能源汽车用动力型锂电池装车量约184GWh。1–4月全国锂电池出口总
北极星储能网获悉,据天眼查显示,近日,昆明理工恒达科技股份有限公司出资400万元成立广东昆工新型储能科技有限公司,持股40%,所属行业为研究和试验发展。资料显示,广东昆工新型储能科技有限公司成立于2025年6月13日,法定代表人为王兆勇,注册资本1000万人民币,公司位于广州市,技术服务、技术开
北极星储能网获悉。2025年6月13日,甘肃瑞志新材料有限公司年产6万吨锂电池石墨负极材料项目在甘肃武威民勤红沙岗能源化工工业集中区正式破土动工。作为湖南优热科技有限责任公司子公司,甘肃瑞志新材料此次示范项目是优热科技Y-ECO(易科)石墨化炉技术全球首个规模化应用案例。该项目总投资约14.2亿
中国锂电企业的全球化进程虽早已开始,但自2025年以来,这一进程已步入一个以“产能落地”为核心特征的全新阶段。其关键区别在于,此前的战略多为宣告、框架协议或开工建设,而当前则转变为海外基地实现规模化生产,并由此带动了从材料到设备全产业链的系统性海外布局。自2025年起,这一“落地”趋势在
北极星储能网获悉,6月16日,针对公司与固态电池是否有关联性问题,星云股份在投资者互动平台表示,公司电池检测设备可用于固态电池研发、生产阶段的电池测试。
近日,思格新能源联合全球权威咨询机构弗若斯特沙利文(FrostSullivan),正式发布《2024全模块化储能行业发展白皮书》(下文简称:白皮书),系统性梳理了全模块化储能市场的发展趋势、技术路径与应用案例。作为全模块化理念在工商业储能领域的重要实践者,思格新能源凭借其技术创新与市场落地表现,
北极星储能网获悉,6月16日消息,德尔股份发布投资者关系活动记录,提到,公司固态电池可以应用于人形机器人领域。公司固态电池有较好的耐高温性能,与液态电池相比对热管理系统的要求相对更简单,而节省出来的热管理系统空间则可用于储放更多的电芯。人形机器人由于整体尺寸限制,预留给电池包的空间
美国电池储能系统集成商Powin已向新泽西州法院申请第11章破产保护,其资产与债务规模均在1亿至5亿美元之间。据悉,该公司及其债务方分别于6月9日和10日向美国新泽西地区破产法院提交了破产重组申请。总部位于俄勒冈州的Powin表示,此举是解决财务负债并保障核心业务的战略举措。第11章破产保护允许企业
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!