登录注册
请使用微信扫一扫
关注公众号完成登录
为t时段光伏波动的幅度;为t时段负荷功率变化量的预测值;为负荷的频率调节效应系数。
δi和分别为由机组和用电负荷决定的常系数,令复合频率调节效应系数为K,具体表达式为
通过区间运算法则,可求得仅采用一次调频手段即可实现功率平衡情况下的光伏波动幅度允许区间,具体表达式为
式中:分别为t时段光伏波动允许区间的上、下限;
分别为t时段由负荷预测误差造成负荷功率变化量的上、下限;、分别为允许频率波动的上、下限。
负荷功率变化量具有预测误差,因此由式(4)、式(5)计算光伏波动允许区间的上、下限时要使用负荷功率变化预测的下、上边界值,使
在误差范围内均可满足功率平衡条件。
1.1.2 二次调频
当一次调频的功率调节能力不足以单独应对分布式光伏波动事件时,为实现功率平衡,需辅以二次调频手段进一步调节机组出力。根据功率平衡,同理可得一次调频和二次调频功率调节同时作用时,能够应对的光伏波动幅度区间为
式中:NAGC为AGC机组的总台数;分别为二次调频参与下t时段光伏波动允许区间的上、下限;
分别为t时段AGC机组j的最小、最大调节量,其约束表达式为
式中:分别为AGC机组j的最小、最大允许出力;Pj,0为预警开始时AGC机组j的初始出力;Rj为机组j的最大出力爬坡速率;
分别为上一时段AGC机组j实际调节量的上、下限,其表达式分别为
式中:分别为上一时段AGC机组j的最小、最大调节量;
分别为上一时段由负荷预测变化和光伏实际波动决定AGC机组j理想调整量的上、下限,具体计算式为
式中:分别为上一时段光伏波动预测误差造成光伏波动预测值的上、下限;
分别为上一时段由负荷预测误差造成负荷功率变化量的上、下限。
1.2 电力系统的主动功率控制过程
由于光伏波动预测前瞻时间有限,在光伏波动较为强烈时,仅采用一次调频及二次调频手段时,可能会出现功率平衡难以实现,进而影响系统频率的整体稳定情况,此时需要采用调度手段以实现功率平衡,具体调度手段主要包括旋转备用和非旋转备用。
1.2.1 旋转备用
在一次调频和二次调频自动调节功率的基础上,增加旋转备用,即通过下达调度指令调节非AGC运行机组的出力,以增加功率调节的能力。根据功率平衡,系统同时采用自动调频手段和旋转备用调度手段实现功率平衡时光伏波动的允许区间为
式中:NTMSR为参加旋转备用的机组总数量;分别为二次调频及旋转备用参与下t时段光伏波动允许区间的上、下限;
分别为t时段旋转备用机组m的最小、最大调节量,其计算式与式(7)~(12)同理。
1.2.2 非旋转备用与停机
在自动调整的基础上增加旋转备用调节速率而不能满足功率平衡时,应对向下光伏波动,须尽快对非旋转机组进行启动操作,以增加机组出力,防止切负荷风险;应对向上光伏波动,尽快对机组进行停机操作,以减少机组出力,防止弃光的发生。功率平衡条件区间形式为
式中:NTMNSR为非旋转备用机组的总台数;和
分别为非旋转备用参与下t时段光伏波动允许区间的上、下限;
分别为非旋转备用或停机机组n的最大、最小调节量,主要受机组最小启动/停止时间影响,具体表达式为
式中:分别为机组n的最大、最小允许出力;
为t时段机组n能否完成启动的标识符,其值与机组n的启动时间
有关,当t?t0?
时,此时机组n完成启动,启动的标识符为1;
为t时段机组n能否完成停止的标识符。
1.3 电力系统的强制功率平衡过程
当上述手段均无法满足功率平衡条件时,不得不采取切负荷的措施以应对向下光伏波动/弃光的措施以应对向上光伏波动,防止功率过高或过低影响电力系统的稳定。此时,电力系统强制实现功率平衡情况为
式中:为弃光容量;
为切负荷容量。
设光伏发电的装机容量为,波动事件发生前光伏出力为则最大波动为
或
实际中,光伏出力量总小于常规机组出力量,因此采用切负荷或弃光等强制手段总能实现功率平衡。
02 计及光伏波动幅度允许区间的滚动预警过程
2.1 分布式光伏波动事件多级预警等级划分
根据第1节的计算方法,当分布式光伏波动事件发生时,求得不同功率控制手段对应的光伏波动幅度允许区间,确定不同预警等级的预警界限,并将其与分布式光伏波动预测值进行比较,以实现分级预警。本文根据分布式光伏波动事件对电力系统稳定性的影响严重程度,制定5个预警等级,各预警等级的预警区间如下。
1)当分布式光伏波动时,光伏波动很小,t时段内仅采用一次调频手段即可实现功率平衡。同时,通过AGC机组的调节作用,系统频率很快恢复到额定值。因此,该分布式光伏波动事件对电力系统稳定性影响很小,无须报警。
2)当时,光伏波动较小,t时段内同时采用一次调频和二次调频可实现功率平衡。一次、二次调频均属于自动控制措施,无需人员控制,但需要时刻监视AGC机组的运行状况。因此,处在该区间的分布式光伏波动事件对电力系统稳定性的影响较小,只需Ⅳ级预警。
3)当时,光伏波动较大,t时段内仅采用自动控制措施无法实现功率平衡,需要运行人员控制旋转备用机组进行调度,才能实现功率平衡。此时运行人员不仅要控制调度,还要监视旋转备用机组的运行状况。因此,处在该区间的光伏波动事件对电力系统稳定性的影响较大,给出光伏波动事件Ⅲ级预警。
4)当时,光伏波动大,t时段内需要在上述基础上增加非旋转备用或关停其他机组才能实现功率平衡。此时需要运行人员在适当的时间,陆续启动或停止机组,以保证备用容量在合理范围内,从而实现功率平衡。因此,处在该区间的光伏波动事件对电力系统稳定性的影响较大,给出光伏波动事件Ⅱ级预警。
5)当时,t时段内采取上述所有功率调整措施均无法实现功率平衡,只能通过弃光或切负荷的方法才能实现功率平衡。若该波动为向上波动,需要采取弃光的手段,则会造成能源资源的巨大浪费,也变向增加了新能源的发电成本,不利于电力系统的经济性;若该波动为向下波动,需要采取切负荷的手段,此时将造成小规模停电,严重影响电力系统的稳定性。因此,处于该区间的光伏波动事件对电力系统经济性和稳定性2方面都有严重影响,给出光伏波动事件最严重的Ⅰ级预警。
2.2 分布式光伏波动事件多级预警等级的概率表示
由于光伏波动幅度的不确定性,通过区间数的形式表示光伏预测波动幅度,确定各预警区间内光伏波动幅度的概率密度,即可计算光伏波动幅度落在不同预警区间的概率。光伏波动幅度不同预警等级的概率为
式中:为光伏波动幅度预测值在预测区间内的概率密度分布;FⅠ、FⅡ、FⅢ和FⅣ分别为光伏波动幅度落在Ⅰ、Ⅱ、Ⅲ和Ⅳ级预警区间的概率;Fnon为无须预警的概率。
对于光伏波动幅度预测误差概率密度分布,采用主流的正态分布模型。假设光伏波动幅度预测误差服从正态分布,光伏波动幅度的概率分布为
式中:μ为t时段正态分布的均值,其值为预测的期望值;为t时段正态分布的方差,假设置信区间的置信度为a,其值为
Za为当置信度为a时的临界值。
2.3 分布式光伏波动事件多级区间滚动预警
分布式光伏波动预测的准确度本身较低,同时预测时间较长时,预测准确度很低。因此,若仅在波动开始时对该事件进行预警,时间尺度越长预警结果越不准确,应采用滚动预警的方式不断校正预警结果,滚动过程如图1所示。
图1 分布式光伏波动事件多级区间滚动预警流程
Fig.1 Multi-stage interval rolling warning flow of distributed photovoltaic fluctuation events
通过定时预测的光伏波动预测数据和机组前一时段的运行状况,重新计算各预警区间的预警界限和预警结果。如在t1时段重新预警,则AGC机组j的最大、最小调节量由式(7)和式(8)修正为
式中:为上一时段预警结果下AGC机组j的最大、最小实际调节量。
式(9)~(12)的修正同理,由此即可实现滚动预警,校正预警结果。
03 算例分析
以10台常规火电机组构成的电力系统为例,验证本文所提多级区间滚动预警方法的适用性。设该系统的下层配电网包含总容量为800 MW分布式光伏,火电机组参数如表1所示,其中1~4号机组为AGC机组。考虑负荷预测比较成熟,设负荷预测误差为2%,各常规机组调差率的标幺值取典型值1%,电力系统频率偏差允许范围为±0.1 Hz。考虑大规模分布式光伏的预测难度较大,预测结果置信度较低,取预测误差为15%。
表1 算例采用的10机系统机组参数
Table 1 Generator parameters of 10-units power system used in case study
3.1 光伏波动算例分析
为验证本文所提分布式光伏波动事件多级区间滚动的预警能力,假设从06:00开始,区域电网内的分布式光伏整体波动预测显示,将发生幅度约为50%常规机组出力的向上光伏波动事件,此类极端事件主要由暴晒等天气引起,每30 min根据新的光伏出力预测数据重新对光伏波动事件预警,实现滚动预警。负荷预测符合城市区双峰曲线,即负荷预测以11:00和18:00为双峰,记作算例1。本算例共计4次预警,即在06:00、06:30、07:00和07:30分别进行预警,结果分别如图2~5所示。
图2 算例1在06:00时的预警结果
Fig.2 Example 1: early warning results at 06:00
图3 算例1在06:30时的预警结果
Fig.3 Example 1: early warning results at 06:30
图4 算例1在07:00时的预警结果
Fig.4 Example 1: early warning results at 07:00
图5 算例1在07:30时的预警结果
Fig.5 Example 1: early warning results at 07:30
在图2 a)中,Ⅳ级—Ⅰ级预警区间对应光伏波动幅度允许区间的上限(即曲线)表示允许的光伏向上波动的最大幅度。本算例为向上光伏波动事件,因此需要使用光伏波动幅度允许区间的上限计算预警区间概率。在06:00—06:45时段,系统可以仅采取一次调频实现功率平衡。从07:00开始,一次调频作用幅度小,单独作用将不再能够满足功率平衡要求,需要使用其他手段共同作用。在07:00—07:30时段,通过AGC机组的二次调频手段,调节AGC机组出力实现功率平衡。在07:30之后,受限于AGC机组的爬坡速率和容量,二次调频也将无法实现功率平衡。在07:45增加旋转备用以调度手段调节功率,可以保证功率平衡,但在此之后,受限于机组容量和爬坡速率,自动调整和旋转备用同时发挥作用也不能保证实现功率平衡。在08:00开始增加非旋转备用的投入,自波动开始,8~10号机组已经完成关机,可以发挥非旋转备用的作用。在08:00之后,自动功率调整和调度手段都无法实现功率平衡,此时需要采用弃光的手段强制实现功率平衡,该手段对电力系统稳定性危害极大。图3 a)、图4 a)和图5 a)中光伏波动幅度允许区间的上限分析同理。
在图2 b)中,通过式(20)~(24)计算各级预警的概率。假设风险预警阈值为10%,即预警等级由高到低,超过10%部分即为该时刻的预警等级,将预警情况分为5个阶段:06:00—06:45时段为阶段1,此时系统不会预警;06:45—07:30时段为阶段2,此时出现Ⅳ级及以上预警的概率大于10%,系统处于Ⅳ级预警状态;07:30—07:45时段为阶段3,此时出现Ⅲ级及以上预警的概率大于10%,系统处于Ⅲ级预警状态;07:45—08:15时段为阶段4,此时出现Ⅱ级及以上预警的概率大于10%,系统处于Ⅱ级预警状态;08:15—09:00时段为阶段5,此时出现Ⅰ级预警的可能性大于10%,系统处于Ⅰ级预警状态。图3 b)、图4 b)和图5 b)同理。
3.2 有效性分析
通过改变系统参数、分布式光伏波动事件和负荷状况,分别对预警结果进行分析,以验证本文预警方法的有效性。
3.2.1 不同系统参数的影响
原系统中的5号机组改为AGC机组,同时将7号机组的最小启动时间改为2 h,使其能够提前参与应对光伏波动过程。光伏波动和负荷预测数据与算例1相同,记作算例2。07:30的预警结果如图6所示。
图6 算例2在07:30时的预警结果
Fig.6 Example 2: early warning results at 07:30
对比图6 a)与图5 a)可知,二次调频允许的波动区间上限曲线略微上移,这是由于算例2中AGC机组增加,导致二次调频的调节速率和可调容量均在一定程度上增加。非旋转备用允许波动区间的上限曲线于08:00发生阶梯式上移,符合7号机组关机时间提前而导致提前上移的预期。
比较图6 b)与图5 b)可知,Ⅲ级预警概率整体明显下降,如在08:00,Ⅲ级预警概率由30%下降为10%左右,下降原因主要是曲线的上移。同时,算例1预测将于08:30—08:45时段出现的Ⅰ级预警,在本算例中改变为Ⅱ级预警,此改变是由于7号机组关机时刻由09:00提前到08:00提前引起的。不难看出,对于分布式光伏渗透率高的系统,增加AGC机组或降低机组的启动/停止时间,有利于电力系统功率平衡的实现,可以在一定程度上提高电力系统的稳定性和灵活性。
3.2.2 不同光伏波动事件发生时刻的影响
假设负荷预测由3.1节的城市区双峰曲线变为工业区双峰曲线,即负荷预测以06:00和18:00为双峰。负荷变化由上升变为下降,其他数据与算例1相同,记作算例3。07:30的预警结果如图7所示。
图7 算例3在07:30时的预警结果
Fig.7 Example 3: early warning results at 07:30
由于算例1中负荷与光伏同向波动,二者作用在一定程度上相互抵消,使净负荷变化更加缓慢,使得预警严重程度相对较低。而在算例3中,负荷需求逐渐减小,光伏出力逐渐增大,即负荷需求与光伏出力变化方向相反,净负荷变化相对增加,增大功率平衡实现的难度。与图5 b)对比,图7 b)中高级别预警出现的概率明显增加。如在07:30—08:00时段,算例1未出现Ⅰ级预警的可能,且Ⅱ级预警的概率均在25%以下,而在算例3可能出现Ⅰ级预警,且Ⅱ级预警的概率均在40%以上。这表明,相同程度的光伏波动事件在不同场景下对电力系统稳定性的影响程度不同。因此,需要同时分析光伏波动事件自身特性和负荷需求变化,才能更加准确地对光伏波动事件的严重程度进行预警分级。
综上所述,本文所提预警方法能够对不同系统参数或不同光伏波动事件影响进行分析,通过分析允许的光伏波动区间上/下限,计算光伏波动落在各级预警区间的概率,有利于运行人员掌握光伏波动事件的严重程度,并根据严重程度提前做出相应措施,避免因只考虑极端场景而造成的情况误判,以减小极端事件对电力系统稳定性造成的不利影响。各场景的仿真结果符合定性分析结论,体现了本文预警方法的有效性。
3.3 对比其他方法
蒙特卡洛法是处理不确定性的常用方法,本文以算例1场景为例,蒙特卡洛法模拟06:00预警10万次,以每个时段模拟的预警等级次数占比作为该时段的预警概率,结果如图8所示。
图8 算例1在06:00时蒙特卡洛法的预警结果
Fig.8 Example 1: early warning results with Monte Carlo method at 06:00
对比图2 b)和图8可知,区间分析法和蒙特卡洛法得到的预警结果仅有很小的差别,预警概率的均方根误差仅有%。在计算耗时方面,蒙特卡洛法需要耗时28.302 s,而本文方法则仅需0.082 s,具有较大的优势。因此,本文方法在计算精度高的同时,计算时间更有优势。
04 结论
针对分布式光伏波动引起的功率平衡困难问题,本文提出了一种基于区间分析的光伏波动事件多级滚动预警技术,得出如下结论。
1)本文采用一次调频、二次调频、旋转备用、非旋转备用和弃光或切负荷等功率控制手段,分别确定了5种措施能够实现功率平衡的分布式光伏波动幅度的允许区间,即各预警等级对应的预警界限。
2)本文方法可以计算出各预警区间的概率,便于运行人员根据预警状况采取对应措施,以减小分布式光伏波动带来的危害。同时,增加预警方法的滚动性,根据最新的光伏出力预测数据对分布式光伏波动事件进行重新预警,校正预警结果,以实现分布式光伏波动滚动预警,有效增加预警结果的可靠性和准确性。
3)对比算例结果表明,针对不同系统运行状态和不同光伏波动事件时,本文方法可以实现对分布式光伏波动事件的多级滚动预警。与蒙特卡洛法相比,本文方法的预警概率结果误差仅有%,且计算时间更有优势,体现了该方法的有效性和适用性,对提高具有高分布式光伏出力占比的电力系统稳定性具有现实意义。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年6月11日,SNEC2025第十八届国际太阳能光伏与智慧能源大会暨展览会于上海国家会展中心盛大开幕,作为全球最具影响力的光伏行业展会之一,汇聚了来自全球的光伏领军企业和创新技术。TCL光伏科技以“碳索新境智领未来”为主题,在6.2H(TCL馆)E670展位惊艳亮相。本次展会,TCL光伏科技全方位展示了
6月11日,第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心隆重开幕。天合富家(展位号:7.2H-E680)携全新升级的“富家2.0”生态体系、全产品矩阵及全场景解决方案重磅亮相,引发业界广泛关注。富家2.0重磅升级本次展会,天合光能副总裁、天合富家总裁助理、营销中心
近年来,我国风电、光伏等新能源发电装机高速增长,在促进经济社会绿色低碳转型等方面发挥了积极作用。与此同时,电力系统安全稳定运行压力不断加大,虚拟电厂作为参与电网调节、开展市场交易、促进供需协同的新型经营主体,受到社会各界高度关注。4月11日,国家发展改革委、国家能源局印发了《关于加
近日,全球光伏行业目光聚焦,横店东磁光伏科技宣布将携3款极具颠覆性的新品与多款特色组件,重磅亮相于6月11-13日举办的SNEC2025国际太阳能光伏与智慧能源(上海)大会暨展览会,展位号6.2H-B690。三款重磅新品G12RT-B66DSW组件InfinityRT系列中的G12RT-B66DSW组件凭借卓越的性能参数,一举刷新行业认
近期,国家发展改革委、国家能源局印发了《关于深化提升“获得电力”服务水平全面打造现代化用电营商环境的意见》(以下简称《意见》)。这一重要政策文件的出台,是坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大和二十届三中全会精神的有力举措,擘画了未来五年全国提升“获
6月5日,从国网北京市电力公司获悉,北京城市副中心绿心园区获得由TüV南德意志集团颁发的碳中和认证证书,成为自国际标准ISO14068公布以来,国内电力行业参与规划建设园区的首张净零排放碳中和认证,充分展现了企业在承担气候责任方面的积极作为。北京城市副中心绿心园区项目由北京电力与北京城市副中
在全球能源转型的关键时刻,产能过剩、价格下滑、同质化竞争已成为中国光伏行业痛点,寻找差异化的颠覆性技术路线成为产业突围的关键。在6月11日将召开的SNECPV+第十八届(2025)国际太阳能光伏和智慧能源储能及电池技术与装备(上海)大会暨展览会(简称“SNECPV+2025国际光伏两会”)上,创维光伏与爱
北极星售电网获悉,贵州省人民政府发布关于征求《贵州省虚拟电厂参与电力市场交易实施方案(征求意见稿)》的通知,虚拟电厂是指运用数字化、智能化等先进技术,将可调节负荷、分布式电源、储能等资源进行聚合、协调、优化,结合相应的电力市场机制,具备参与电网运行调节能力的系统。根据资源禀赋条件
日前,南网能源发布《关于拟对外投资降碳节能项目关联交易的公告》,公告显示,公司积极推动与重要股东的协同发展,拟在广东省广业环保产业集团有限公司(以下简称“广业环保集团”)所属的九座污水处理厂投资约5,197.88万元建设分布式光伏电站。根据公告,本项目投资建设需利用广业环保集团的场地,并
6月10日,厦门市发展和改革委员会征求《厦门市氢能产业高质量发展行动计划(2025—2027年)(征求意见稿)》意见。其中提出,打造氢能产业技术创新策源地,加强关键核心技术攻关。布局建设氢能产业创新支撑平台。完善氢能标准体系建设。详情如下:厦门市氢能产业高质量发展行动计划(2025—2027年)(
近日,云南省能源局发布关于云南省政协第十三届三次会议第0240号提案的答复,其中提出,加强“风光水储”基地规划建设。推进澜沧江、金沙江等流域“风光水(储)一体化”基地建设,打造李仙江、普度河等中小流域“风光水(储)一体化”基地,推进曲靖、红河等火电支撑区域“风光火储一体化”基地建设,
6月11日,阳光电源携近30款新能源展品亮相2025SNEC光伏展,涵盖能源基地、零碳园区和零碳家庭三大板块。通过AI焕新、主动安全、全系构网,持续推动构建清洁低碳、安全高效的现代化智慧能源体系。(阳光电源展台现场)针对大型光伏电站,阳光电源重磅发布两款逆变器新品#x2014;#x2014;全球首款400kW#x2B
2025年4月28日,西班牙、葡萄牙及法国南部地区突发大规模停电,导致伊比利亚半岛数千万人在白昼陷入黑暗,交通瘫痪、通信金融服务中断、医疗停摆、社会秩序混乱。此次持续近20小时的大停电是欧洲近年来最严重的一次,堪称“21世纪最严重的非战争型基础设施灾难”,暴露出高比例可再生能源接入背景下电
全国第24个“安全生产月”期间,围场满族蒙古族自治县供电公司依托“电力爱心超市”,结合“村网共建”工作,在定点帮扶村围场满族蒙古族自治县宝元栈乡丰富沟村开展形式多样的系列活动,营造“人人讲安全个个会应急”的浓厚氛围。6月10日上午,围场满族蒙古族自治县供电公司“电力爱心超市”安全生产
为深入贯彻落实安全生产工作要求,切实保障作业人员生命安全与企业生产稳定,6月9日,宽城公司安监部组织稽查人员对承供宽城县110千伏宽城变电站10千伏电容器改造、承供宽城110千伏城东变电站电缆沟维修、承供宽城县35千伏城南变电站10千伏唐杖子515线路更换开关等作业现场开展安全督查。本次督查聚焦
“大妈,这上面有夏天注意事项,空调电扇别同时开,还有触电急救——先断电,用干燥木棍挑电线……”5月29日,宽城公司峪耳崖供电所员工马志桂、董占忠深入宽城县峪耳崖镇山家湾子村,开展乡村用电客户专项服务活动,帮助客户检查家中用电设备,全力保障客户用电无忧。随着近期气温持续升高,各类制冷
6月2日-6月10日,国家电网公司2025年配电网发展评估评价专业竞赛在党校圆满举办,作为支撑单位,党校以“全流程严密管控、全要素精准保障、全场景数智融合、全周期暖心服务”为目标,构建“严、细、智、暖”四维支撑体系,为竞赛注入专业化、规范化、人性化动能,致力打造高质量服务标杆。全流程严密管
6月9日,为确保高考期间电力稳定供应,国家电网冀北电力(唐山“钢铁之魂·丰润”)共产党员服务队银城铺镇供电所分队在高温酷暑下坚守岗位,以高度的责任感和专业精神,全力做好高考保电工作。高考前夕,银城铺镇供电所分队提前谋划、精心部署。组织专业技术人员对辖区内考点的配电设备、线路进行全面
近日,持续的高温天气给电网安全稳定运行带来了严峻挑战。为确保广大用户在炎炎夏日能够用上安全、稳定的电力,6月9日国家电网冀北电力(唐山“钢铁之魂”·丰润)共产党员服务队丰登坞镇供电所积极行动,主动出击,全面开展线路隐患排查巡视工作,全力防范火灾危及高压线路,以实际行动守护着万家清凉
6月9日从国网河南省电力公司获悉,截至5月底,随着调度操作防误校核系统覆盖国网河南电力调度控制中心和18个市级调度控制中心,郑州220千伏智德、瀚海及110千伏颍河变电站跨站系统级防误试点建设完成,该公司已全面构建“调度端”到“厂站端”防误校核安全体系。国网河南电力实现调度指令智能管控闭环
6月5日,国家电网有限公司组织开展2025年水电防汛防台风应急演练。公司副总经理、党组成员季明彬现场观摩演练活动并讲话。季明彬要求,要准确把握安全生产与防汛防台风带来的新挑战,增强工作的主动性和紧迫感,以更高站位、更有力措施抓紧抓实各项工作。要全面提升应急处置能力,坚决贯彻“两个坚持、
5月30日,在国家电网有限公司西北分部部署下,国内首个“沙戈荒”宽频振荡就地监测及协同防控系统在750千伏曲子变电站及所接330千伏新能源汇集站投运,实现庆东直流配套新能源大基地宽频振荡的实时监测、精准定位、快速处置。这是西北电网在宽频振荡系统治理方面取得的重要技术突破,有助于提升“沙戈
2025年6月11日,SNEC2025第十八届国际太阳能光伏与智慧能源大会暨展览会于上海国家会展中心盛大开幕,作为全球最具影响力的光伏行业展会之一,汇聚了来自全球的光伏领军企业和创新技术。TCL光伏科技以“碳索新境智领未来”为主题,在6.2H(TCL馆)E670展位惊艳亮相。本次展会,TCL光伏科技全方位展示了
6月11日,2025年SNECPVamp;ES国际光伏amp;储能两会在上海启幕,来自全球超3500家新能源企业汇聚于此,共享尖端科技与智慧。在会上,海尔新能源推出了行业领先的智能微电网边缘智控AI能源机器人,该机器人是源网荷储一体化解决方案中的核心智慧大脑,真正做到能感知、能决策、能执行,构建完整、高效的
2025年6月11日——在全球新能源产业瞩目的SNECPV+第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会上,武汉德行天下机器人科技有限公司(以下简称“德行天下机器人”)隆重发布第二代郧生系列光伏清洁机器人——郧生一号、郧生剑客,并同步推出德行天下智慧数字运维系统(DXS),将为全球光伏电站
6月11日,为期三天的第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国际会展中心盛大开幕。固德威以“构建源网荷储智一体化能源生态系统”为战略核心,全方位展示了其前瞻性的智慧能源解决方案与尖端产品技术,吸引了众多行业专家、媒体、客户前来交流参观。“源网荷储智”一体
2025年6月11日,东方日升亮相第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会(SNEC),并于展会期间正式发布“光储全场景解决方案”。在光伏行业高速发展的浪潮中,看似完整的产业链闭环实则暗藏孤岛:售后服务体系分散导致推诿无门,采购成本居高不下叠加流程冗余,复杂的运维操作更令客户疲于
6月11日,第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心隆重开幕。天合富家(展位号:7.2H-E680)携全新升级的“富家2.0”生态体系、全产品矩阵及全场景解决方案重磅亮相,引发业界广泛关注。富家2.0重磅升级本次展会,天合光能副总裁、天合富家总裁助理、营销中心
在SNEC第十八届(2025)国际太阳能光伏与智慧能源展览会的舞台上,隆基绿能再度成为行业焦点。骄阳似火的六月,这场盛会见证了光伏行业的蓬勃发展,也让建筑光伏这一热门领域大放异彩。展会现场,LONGiHiROOFS与隆基隆顶5两款新品首次公开亮相,吸引众多观众驻足。工作人员现场讲解产品特性与优势,直观
2025年6月11日,第十八届国际太阳能光伏和智慧能源&储能及电池技术与装备(上海)大会暨展览会(SNEC2025)盛大开幕。产业技术的全球领导者施耐德电气携覆盖新型电力系统“源网荷储”全场景,以及贯穿新能源建设“设计-建造-运维”全生命周期的整体解决方案重磅亮相。展会现场,施耐德电气重磅首发全域
6月11日,广东省能源局发布关于做好2026年省级节能降耗专项资金储备项目征集工作助力大规模设备更新的通知,能源领域聚焦煤电机组爬坡性能提升、宽负荷高效改造涉及的燃煤锅炉、汽轮机、发电机等主辅设备更新改造。详情如下:广东省能源局关于做好2026年省级节能降耗专项资金储备项目征集工作助力大规
6月11日,在第18届(2025)国际太阳能光伏展(SNEC)上,隆基正式发布其全新研发的HIBC技术及量产组件产品。HIBC开创行业先河,首次依托2382mmX1134mm黄金尺寸实现功率700W#x2B;,量产组件效率更是逼近26%,全面引领光伏组件效率迈入“25%#x2B;时代”。HIBC重磅发布nbsp;带来“高价值与可靠性”更优解H
日前,国家发展改革委和国家能源局联合印发《关于深化提升“获得电力”服务水平全面打造现代化用电营商环境的意见》(发改能源规〔2025〕624号),在《关于全面提升“获得电力”服务水平持续优化用电营商环境的意见》(发改能源规〔2020〕1479号)原有“三零”“三省”基础上,进一步强化改革思维、加
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!