北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能材料市场正文

JFD:为什么富锂锰基正极材料产业化应用不现实?

2015-07-10 14:12来源:高工锂电网关键词:正极材料富锂锰基锂电池收藏点赞

投稿

我要投稿

关于OLO的成分问题,国际上比较一致的观点是仅仅使用Ni和Mn是不可能获得比较好的电化学性能的。要想获得比较好的综合性能,Co是必须的而且含量不能太低(至少10%)。如果考虑到前驱体阶段独特的合成工艺,烧结过程需要50%过量的锂盐,以及材料表面包覆改性后处理,那么OLO的整体生产成本并不比普通三元材料具有绝对优势。

目前OLO最突出的优点是高容量和高电压,0.05C做到250以上接近300的容量很容易。除了高容量和高电压这两个优点以外,OLO其它方面就几乎都是缺点了。有些问题是可以得到改善,比如首次效率可以通过表面包覆改性或者特殊的表面活化工艺提高到85%接近90%,目前首效已经不是很大问题了。倍率目前3C已经可以达到200了,一般的小倍率应用也可以。振实密度目前还较低基本上不能超过1.8。振实和压实不是不能做高,而是做高了影响倍率和容量发挥而得不偿失。跟LNMS相似,OLO的全电池数据跟半电池数据会有较大的差异,因此对于这个材料而言扣电数据仅能参考而已。目前国际上已经有几家公司可以提供中试级的OLO样品,笔者的测速数据显示BASF的样品综合性能较好。2.0-4.8V(扣电)的区间内0.05C可以释放的容量,1 C和3 C的容量分别为2 5 0mAh/g和200mAh/g,使用Novolyte的特种高压电解液在全电池里面可以循环接近300周的水平(70%容量保持率)。

但是从技术角度来说,OLO材料有几个问题目前还很难解决,甚至可以说是无法解决:

OLO材料的循环性目前还是一个很大的问题。由于OLO在循环过程中存在着层状向尖晶石的不可逆相转变过程,富锂材料在首次循环后其组成中有一部分是以LiMnO2的形式参与电化学循环过程的,由于结构的变化导致其循环稳定性较差。有报道显示,OLO的循环性与库仑效率以及在高电位区间的停留时间和温度有很大的关联。

笔者个人认为,跟LMO的情况类似Mn的溶解也应该是影响OLO循环性的一个重要因素,而且溶解在高电压和高温下会更加明显。当然,电解液氧化造成的界面阻抗增加也是其循环性恶化的一个重要原因。可见,OLO循环性差是多方面问题的综合体现。OLO的循环性目前比较好的结果是在全电池里面100% DOD循环200-300次而已,再进一步提高的难度就比较大了。

O L O存在明显的电压衰减问题(v o l t a g efade),电压衰减在前几周较明显,随后的循环中减小,并且随着测试温度和充电电压的身高而更加严重。造成的原因目前还不是很清楚,可能与材料的失序和重排造成的缺陷,过渡金属的迁移以及过高的充电电压都有关系。电压衰减问题将给电池模块的BMS设计带来了相当的难度。“layered- layerdd-spinel” composition 有可能缓解这个问题,但笔者认为这个idea在工业上比较难实现。OLO同时又存在电压滞后问题(voltagehysteresis),这样使得它相对于其他正极材料而言能量效率比较低(请注意库仑效率和能量效率的区别),这对于电动汽车和储能的应用将是个大问题。导致voltage fade 与voltage hysteresis的原因可能有一定的关联,但它们是两个完全不同的概念。同时具有这两个问题是OLO跟其它正极材料在电化学行为上的显着不同点。

OLO的安全性问题很大,在首次充电过程中就伴随着氧气的释放。常规碳酸脂基电解液在4.6V以上分解比较厉害,电解液的氧化导致OLO产气问题非常严重,并且OLO本身在DSC上的放热温度比LCO还低。与OLO相关的安全性问题,目前研究得还不是很多。笔者要强调的是,不管是对以3C小电池还是大型动力电池而言,安全性是高于其他任何性能指标处在第一位的。表面包覆改性可以在一定程度上改善OLO的安全性,目前效果比较理想的是AlPO4和 AlF3包覆,但包覆在产业化生产上仍然比较困难。

原标题:JFD:为什么富锂锰基正极材料产业化应用不现实?
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

正极材料查看更多>富锂锰基查看更多>锂电池查看更多>