北极星

搜索历史清空

  • 水处理
您的位置:电力评论正文

【智能电网】田世明:智能配用电大数据关键技术研究

2015-08-11 10:30来源:供用电杂志作者:田世明等关键词:智能电网配用电网电力系统收藏点赞

投稿

我要投稿

随着智能电网的建设,积累了大量的配用电数据,对大数据技术也产生强烈的需求。智能配用电大数据应用关键技术具体包括:配用电网大数据体系架构及共性基础技术;用户用电负荷数据存储分析与修正技术;用电预测等智能配用电业务应用大数据分析技术;智能配用电大数据示范应用方案设计。

0.引言

近年来,大数据(big data)技术得到了各国政府和全球学术界、工业界的高度关注和重视,在各行业领域的应用迅猛发展。2012年3月,美国政府发布了“大数据研究发展创新计划”,我国政府、学术界和工业界对大数据也予以了高度关注。就电力行业而言,近年来数据资源开始急剧增长并形成了一定的规模,对大数据技术也产生强烈的需求。具体表现为数据量由TB级向PB级发展,数据高性能存储和高可扩展性面临挑战;业务向智能化、精益化方向发展,对复杂数据处理和实时性提出更高要求;跨业务、跨平台的数据处理和分析能力需要进一步提升。

配用电网大数据体系架构方面,大数据软件体系结构可分为数据采集与预处理、数据存储和管理、数据分析和挖掘等几个方面。在大数据存储和管理方面,当前普遍采用的是分布式文件系统和分布式数据库。由于大数据处理的多样性和复杂性,学术界和工业界不断研究和推出新的大数据计算模式和平台;重要的发展趋势包括Hadoop平台与其他计算模式的融合、多样性混合计算模式、基于内存的大数据处理技术。可视化是大数据分析的重要手段,同时大数据也对可视化技术提出了新的挑战。实际应用中存在大量高速时序数据,而且这些数据的维度都很高,如何对这样的数据进行可视化还没有得到很好的解决,也是亟需研究的问题。

用户用电负荷数据的存储处理方面,用电负荷数据存在着多种形态、频度,如何构建合理的存储结构以满足用电负荷数据的需求,已成为新的研究热点。当前,存储、索引的统筹设计也是适应海量高维时序数据的方向之一。另外,用电负荷数据通常可以从不同层面进行聚类:时间层面上,针对不同时间范畴的负荷序列进行聚类;用户层面上,对不同用户的用电负荷数据和其他信息聚类,实现用户群体的划分。关联分析是在聚类等手段的基础上分析信息内在关联的手段。特别是对用电负荷大数据如何结合具体业务进行聚类和关联分析还亟待研究。

本文研究智能配用电大数据应用关键技术,具体包括:①配用电网大数据体系架构及共性基础技术;②用户用电负荷数据存储分析与修正技术;③用电预测等智能配用电业务应用大数据分析技术;④智能配用电大数据示范应用方案设计。

1.技术现状

1.1智能配用电业务分析的国内外研究现状

近年来,智能配用电得到了重点关注和快速发展,其资源优化配置能力强,运行稳定高效,适应新能源的发展。

原标题:【特别策划】田世明:智能配用电大数据关键技术研究
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

智能电网查看更多>配用电网查看更多>电力系统查看更多>