登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
(3)中子衍射(ND)
当锂离子电池材料中有较大的原子存在时,X 射线将难以对锂离子占位进行精确的探测。中子对锂离子电池材料中的锂较敏感,因此中子衍射在锂离子电池材料的研究中发挥着重要作用。
Arbi等通过中子衍射确定了锂离子电池固态电解质材料LATP中的Li+占位[13]。
(4)核磁共振(NMR)
NMR具有高的能量分辨、空间分辨能力,能够探测材料中的化学信息并成像,探测枝晶反应、测定锂离子自扩散系数、对颗粒内部相转变反应进行研究。
Grey等对NMR在锂离子电池正极材料中的研究开展了大量的研究工作。表明从正极材料的NMR谱中可以得到丰富的化学信息及局部电荷有序无序等信息,并可以探测顺磁或金属态的材料,还可以探测掺杂带来的电子结构的微弱变化来反映元素化合态信息。另外结合同位素示踪还可以研究电池中的副反应等[14]。
(5)球差校正扫描透射电镜(STEM)
用途:用来观察原子的排布情况、原子级实空间成像,可清晰看到晶格与原子占位;对样品要求高;可以实现原位实验
Oshima等利用环形明场成像的球差校正扫描透射显微镜(ABF-STEM)观察到了Li2VO4中Li、V、O在实空间的原子排布[15]。
(6)Raman
早期用拉曼光谱研究LiC0O2的晶体结构,LiC0O2中有两种拉曼活性模式,Co—O伸缩振动Alg的峰与O—Co—O的弯曲振动Eg的峰[16]。也多用于锂离子电池中碳材料石墨化程度的表征分析。
4、官能团的表征
官能团又称官能基、功能团,是决定有机化合物化学性质的原子和原子团。常见官能团有烃基、含卤素取代基、含氧官能基、含氮官能基以及含磷、硫官能团5 种。
(1)拉曼光谱(RS)
由印度物理学家拉曼在单色光照射液体苯后散射出的与入射光频率不同谱线的实验中发现的,从拉曼光谱可以得到分子振动和转动的信息。拉曼光谱适用于对称结构极性较小的分子,例如对于全对称振动模式的分子,在激发光子的作用下,会发生分子极化,产生拉曼活性,而且活性很强。
在锂离子电池电极材料表征时,由于拆卸和转移过程难免人为或气氛原因对电极材料造成干扰,因此原位技术与拉曼光谱一起用在了电极材料的表征上。拉曼光谱对于材料结构对称性、配位与氧化态非常敏感,可用于测量过渡金属氧化物。
对于拉曼光谱的灵敏度不够的情况,可以使用一些Au和Ag等金属在样品表面进行处理,由于在这些特殊金属的导体表面或溶胶内靠近样品表面电磁场的增强导致吸附分子的拉曼光谱信号增强,称之为表面增强拉曼散射(SERS)。
Peng等利用SERS的手段证实了锂空电池充放电过程中确实存在着中间产物LiO2,而在充电过程中LiO2并没有观测到,说明了锂空电池的放电过程是一个两步反应过程,以LiO2作为中间产物,而充电过程是不对称的一步反应,Li2O2的直接分解,由于Li2O2导电性差分解困难,这也是导致充电极化大于放电极化的原因[17]。
(2)傅里叶变换红外光谱(FT-IS)
红外光谱使用的波段与拉曼类似,不少拉曼活性较弱的分子可以使用红外光谱进行表征,红外光谱也可作为拉曼光谱的补充,红外光谱也称作分子振动光谱,属于分子吸收光谱。
依照红外光区波长的不同可以将红外光区分为三个区域:① 近红外区,即泛频区,指的是波数在4000 cm−1以上的区域,主要测量O—H、C—H、N—H键的倍频吸收;② 中红外区,即基本振动区,波数范围在400~4000 cm−1,也是研究和应用最多的区域,主要测量分子振动和伴随振动;③ 远红外区,即分子振动区,指的是波数在400 cm−1以下的区域,测量的主要是分子的转动信息。
由于水是极性很强的分子,它的红外吸收非常强烈,因此水溶液不能直接测量红外光谱,通常红外光谱的样品需要研磨制成KBr的压片。
通常红外光谱的数据需要进行傅里叶变换处理,因此红外光谱仪和傅里叶变化处理器联合使用,称为傅里叶红外光谱(FITR)。在锂离子电池电解液的研究中,使用红外光谱手段的工作较多。
Mozhzhukhina等利用红外光谱对锂空电池电解液常用的溶剂二甲基亚砜DMSO的稳定性进行了研究,发现DMSO在锂空电池中无法稳定主要是由于超氧根离子(O2-)的进攻,而在红外光谱中观测到SO2的信号存在,这个反应难以避免,即使在低至3.5 V的电位下,DMSO也无法稳定[18]。
(3)深紫外光谱(UV)
主要用于溶液中特征官能团的分析
5、材料离子运输的现象
(1)中子衍射(ND)
结合最大熵模拟分析方法可以得到电极材料中的Li+扩散通道的信息[19]
(2)核磁共振(NMR)
测得一些元素的核磁共振谱随热处理温度的变化,测得Li+的自扩散系数
Gobet等利用脉冲梯度场的NMR技术表征了β-Li3PS4固体中1H、6.7Li、31P核磁共振谱随热处理温度的变化,测得了Li+的自扩散系数,与之前报道的Li+电导率数量级一致[20]。
(3)原子力显微镜系列技术(AFM)
利用针尖原子与样品表面原子间的范德华作用力来反馈样品表面形貌信息。AFM具备高的空间分辨率(约0.1Å)和时间分辨能力,由于它不探测能量,并不具有能量分辨能力,与1996年首次应用于锂离子电池研究中,
Zhu等采用固态电解质通过磁控溅射的方法制备了一个全电池,再通过in situ AFM的手段检测Ti02负极表面形貌随所加载的三角波形电压的变化[21]。
6、材料微观力学性质
电池材料一般为多晶,颗粒内部存在应力。在充放电过程中锂的嵌入脱出会发生晶格膨胀收缩,导致局部应力发生变化,进一步会引起颗粒以及电极的体积变化、应力释放、出现晶格堆垛变化、颗粒、电极层产生裂纹。
(1)原子力显微镜系列技术(AFM)与纳米压印技术以及在TEM中与纳米探针、STM探针联合测试
观察形貌特征,在采用固态电池时可以进行原位力学特性、应力的测量
Jeong等采用AFM原位观察了HOPG基面在循环伏安过程中形成的表面膜的厚度[22].
(2)SPM探针
用途:研究SEI膜的力学特性
在接触模式下,以恒力将探针扎入膜,便可得到该处扎入深度随力的响应曲线,进而可以得到杨氏模量等信息[23]。
7、材料表面功函数
(1)开尔文探针力显微镜(KPFM)
通过探测表面电势对探针的作用力,来得到样品表面的电势分布
agpure等利用开尔文探针显微镜技术(KPFM)测量了老化后的锂离子电池表面电势,老化后的电池具有更低的表面电势,这可以归因于颗粒尺寸、表面层的相变以及新沉积物的物理化学性质的影响[24]。
(2)电子全息
测到全固态锂离子电池充放电过程中电势的变化情况,得到不同体系下电势在界面的分布
Yamamoto小组通过电子全息的方法直接观测到了全固态锂离子电池充放电过程中电势的变化情况,成功地得到了不同体系下电势在界面的分布,验证了电势主要分布在正极/电解质界面的结论[25]。
(3)光发射电子显微镜(PEEM)
用于得到表面电势的分布
除了上述表征手段,在实际的实验中,还会用到一些其他的表征技术,比如:(1)角分辨光电子能谱(ARPES),用途:直接测量材料能带结构;(2)DFT计算,用途:获得材料的电子结构;(3)电子淹没技术(PAT),用途:测量缺陷结构和电子结构;(4)卢瑟福背散射(RBS),用途:可以测量薄膜组成;(5)共振非弹性X射线散射(RIXS),用途:研究原子问磁性相互作用;(6)俄歇电子成像技术(AES),用途:直接探测颗粒、电极表面锂元素空间分布,通过Ar离子剥蚀还可进行元素深度分析等。当然,在研究锂电时,电化学表征也是十分重要的。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,4月14日晚间,天赐材料披露公司2024年业绩,2024年,公司营收125.18亿元,同比降18.74%;归属于上市公司股东的净利润4.84亿元,同比降74.40%;拟每10股派发现金红利1元(含税)。锂离子电池材料毛利率比上年同期减少7.81个百分点,降至17.45%。
北极星储能网获悉,3月5日晚间,石大胜华发布公告,公司控股子公司胜华新材料科技(连江)有限公司(以下简称“胜华连江”)近日与宁德时代签订了《战略合作框架协议》。协议约定,在本协议有效期内(自本协议生效之日起至2025年12月31日),宁德时代向胜华连江采购电解液的需求预计10万吨。具体产品名
作者:周添,孙杰,李吉刚,卫寿平,陈静,张帆单位:陆军防化学院DOI:10.19799/j.cnki.2095-4239.2024.0519引用:周添,孙杰,李吉刚,等.软包三元锂离子电池热失控毒性产物分析及结构变化研究[J].储能科学与技术,2024,13(11):4143-4154.本文亮点:1.通过锂离子电池热失控产物数据库和改进分析方法,对三元材
电解液行业概述电解液是化学电池、电解电容等使用的介质,用于不同行业其代表的内容相差较大。有生物体内的电解液(也称电解质),也有应用于电池行业的电解液,以及电解电容器、超级电容器等行业的电解液。不同的行业应用的电解液,其成分相差巨大,甚至完全不相同。具体的电解液成分和配方可能因不同
天赐材料6月17日午间公告,公司全资子公司宁德市凯欣电池材料有限公司(宁德凯欣)与宁德时代签订《物料供货协议》。协议约定,在本协议有效期内(自协议生效之日起至2025年12月31日),宁德凯欣(包含其关联公司)向宁德时代(包含其关联公司)预计供应固体六氟磷酸锂使用量为5.86万吨的对应数量电解
近日,湖南升容科技有限公司(简称“升容科技”)顺利完成数千万元天使轮融资,由同创伟业独家投资。本次融资将用于公司进一步完善团队,加速新型锂电补锂材料的突破和量产,为下一代长循环锂离子电池及固态电池的量产打好基础。”随着新能源汽车、消费电子等产业发展,锂电池行业规模不断扩大。但伴随
北极星储能网获悉,瑞泰新材3月5日在回复投资者提问时表示,公司主要产品锂离子电池材料的最重要应用为新能源汽车电池和锂离子储能电池,这两种应用分别属于国家发展和改革委员会《绿色产业指导目录(2023年版)》(征求意见稿)中“节能降碳产业”和“清洁能源产业”的相关范畴;公司锂离子电池电解液
北极星输配电网获悉,2月18日,甘肃金昌印发市政府工作报告主要指标和重点任务分解方案,其中提到,开工建设源网荷储一体化试点、腾格里2×1000MW煤电等项目,加快建设永昌抽水蓄能电站,抓好陇电入浙特高压配套电源及变电站等项目前期。同时提到,实施37GWh新能源电池制造项目,做好20万吨锂离子电池
11月22日,甘肃省人民政府关于印发甘肃省新材料产业发展规划的通知,通知指出,发展目标:到2030年,全省新材料产业规模实力、集群效应、创新能力实现新发展,新材料产业产值超过3000亿元,年均增速20%左右,不断满足传统产业转型升级和战略性新兴产业创新发展需求,建设成为国内重要、西部领先
11月15日,巴斯夫声明称,与电动汽车电池制造商SKOn已达成协议,将携手评估在全球锂离子电池市场的合作机会,尤其是北美及亚太市场。合作双方将汇集强大的业务和产品开发能力,共同开发具有行业领先优势的锂离子电池材料。
近日,深圳市龙华区发展和改革局发布关于《关于锂电功能材料研发中心和生产基地项目遴选方案的公示》,深圳市研一新材料有限责任公司(以下简称“深圳研一”)为项目意向用地单位。据了解,深圳研一将在深圳龙华打造全新的锂电功能材料研发总部,建立全球领先的锂电池材料配套基地。项目聚焦动力电池关
作者:张文婧肖伟伊亚辉钱利勤单位:长江大学机械工程学院引用:张文婧,肖伟,伊亚辉,等.锂离子电池安全改性策略研究进展[J].储能科学与技术,2025,14(1):104-123.DOI:10.19799/j.cnki.2095-4239.2024.0579本文亮点:1.根据锂离子电池热失控机制,总结了在电池部件集流体上最具有创新性的改进方法:将集
北极星储能网获悉,近日,湖南湘西州泸溪县人民政府关于印发《泸溪县碳达峰实施方案》(以下简称《方案》)的通知。《方案》指出,推动储能技术应用,积极推动风电和集中式光伏项目配建储能电站。加快推动电芯制造、电池组装等规模化生产,加强全固态电池等前沿技术研究和储备,重点发展磷酸铁、锂、石
电池的应用有着非常重要的意义。动力电池是交通领域实现电气化的核心,能够间接促进二氧化碳排放的大幅减少;电池在储能领域的应用则可以保障可再生能源电力供给的稳定性与可靠性。但如何达到电池既便宜,又能量密度大,还能寿命更长?科学家在进行不断探索,各种技术路线也各显神通。锂离子电池是目前
北极星储能网获悉,据外媒报道6月26日,2019年化学诺贝尔奖得主约翰·古迪纳夫(JohnB·Goodenough)去世,享年100岁。2019年10月,瑞典皇家科学院决定将2019年诺贝尔化学奖授予约翰·古迪纳夫(JohnB·Goodenough)、斯坦利·威廷汉(M·StanleyWhittingham)和吉野彰(AkiraYoshino),以表彰他们在
摘要近年来,对低成本储能技术日益增长的需求促使越来越多的科研人员和工程师加入到钠离子电池基础研究和工程化探索的事业中来,钠离子电池以可观的速度在近10年内快速成长。本文首先分析了全球锂资源形势,尤其是我国锂资源存在的潜在风险;随后回顾了钠离子电池的前世今生,并着重介绍了近些年全球钠
经过几十年的发展,锂离子电池能量密度的提升速度已明显放缓,并逐渐接近理论极限。与此同时,固态电池、钠离子电池、锂硫电池、燃料电池等新型储电和发电体系快速发展,开始为各种应用场景提供更多选项。(来源:微信公众号:锂电前沿ID:lidianqy作者:赵维杰)在此次由《国家科学评论》(NationalSc
北极星储能网获悉,辽宁龙宇石油化工拟在辽宁盘锦大洼区建设乙烯焦油生产中间相炭微球锂电池负极材料项目,目前正在环评公示。据了解商业化的锂离子电池负极材料主要是石墨,但是由于其结构的局限性,使其不适用于快速充放电,成为了制约动力锂离子电池发展的主要原因。而中间相炭微球作为负极材料具有
在原材料成本方面,铜基钠离子电池[0.29元/(W·h)]相比磷酸铁锂电池[0.43元/(W·h)]有明显的优势(低约1/3);铅酸电池虽然售价便宜,但是如果不考虑回收的话,单位能量的价格[0.40元/(W·h)]和磷酸铁锂电池相差不大。相比于铅酸电池,同等容量的钠离子电池体积更小、重量更轻,比能量高出2倍以上,且
摘要:据估测,2020年,中国废弃锂电池将达到250亿只,重量约为50万吨。在我国,磷酸铁锂电池占据市场份额较大,2015年市场份额为69%。(来源:微信公众号“中科院之声”作者:徐垒付明来)一、锂离子电池应用方兴未艾锂电池是指锂离子电池,由锂离子在正负极材料之间嵌入-脱出实现充放电工作。其应用
引言:在我国,储能产业“政策先行、项目随后”的模式,一方面推动储能在电力市场的应用向更大、更多、更广的趋势快速发展,推动了资本加大投入和技术研发的突破,是行业发展初期强有力的支撑;另一方面政策的调整与变动,也不可避免地造成从业人员的担忧与审慎,阻碍储能产业良性发展。(来源:微信公
日前,瑞典皇家科学院将诺贝尔化学奖授予对锂离子电池发展作出突出贡献的3位科学家。其中,惠廷厄姆采用硫化钛作为正极材料,金属锂作为负极材料,制成世界上第一块锂离子电池。古迪纳夫经过反复实验与验证,发现钴酸锂比硫化钛更适合储存锂离子,进而显著提高电池的电压平台。吉野彰在此基础上,采用
5月22日,楚能新能源与常州锂源新能源科技有限公司在楚能新能源全球总部签署战略合作协议。楚能新能源董事长代德明、执行副总裁卜相楠、副总裁朱小平,常州锂源董事长石俊峰、总经理吕从江、客户总监沈州俊等双方高层出席本次签约仪式。同时,双方建立长期合作的机制,共同推进多元化、高质量、高压实
北极星储能网获悉,5月22日,当升科技发布2024年度向特定对象发行股票募集说明书,发行对象为矿冶集团,募集资金总额不低于人民币80,000万元(含本数)且不超过人民币100,000万元(含本数)。发行前,公司总股本为506,500,774股。矿冶集团持有公司117,437,261股股份,持股比例为23.19%,为公司控股股东
储能领域持续爆单后,磷酸铁锂电池继续在动力市场“霸榜”。最新数据显示,今年3月国内动力电池装机量达到56.6GWh,同比及环比均增长61%以上,其中磷酸铁锂电池装机量占比超过82%,环比增长约64%,同比增长约97%,再次“跑赢大盘”,成为增速最快的电池种类。但与三元电池相通的是,如今的磷酸铁锂材料
北极星储能网获悉,5月20日富临精工在互动平台回答投资者提问时表示,公司磷酸铁锂正极材料主要应用于新能源汽车动力电池,也可以用于储能领域。公司将以市场和客户需求为导向,积极布局新能源锂电正极材料产业,后续将根据客户需求持续推进技术和产品升级,满足客户和市场多元化需求。
北极星储能网获悉,5月21日,龙蟠科技发布投资者关系活动记录表,回答投资者公司在正极材料、钠电池、固态电池等方面的布局。龙蟠科技表示,本次公司推出的4代一烧高压密磷酸铁锂正极材料采用特殊的一次烧结工艺,在性能、成本、环保多个维度实现行业突破。产品具有超高压实性能,压实密度可以达到2.62
北极星储能网获悉,5月20日,龙蟠科技在投资者互动平台上表示,针对三元和固态电池,公司旗下的全资子公司三金锂电专注于固态电池前驱体的研发和生产。目前针对固态电池的高镍前驱体和富锂锰基前驱体正在和客户展开验证,三金锂电还推出了针对固态电池量身开发的D系列高镍三元前驱体材料,通过元素掺杂
自从磷酸铁锂于2023年进入亏损周期后,行业何时触底就是一个老生常谈的话题了,也是一个行业一直期望却一再落空的话题。根据ICC鑫椤锂电统计,2025年以来,除了2月份受春节放假影响,月度出货量在百吨级以上的样本企业,月度合计产能利用率是节节攀升的。湖南裕能、富临升华几乎满产,安达科技、万润新
北极星储能网获悉,5月19日,五矿新能在投资者互动平台上表示,公司专注于高效电池材料的研究、生产与销售,拥有锂电多元材料前驱体和正极材料、磷酸铁锂正极材料完整产品体系。根据国家战略导向、行业客户需求和企业发展需要,在新能源汽车动力电池、3C数码电池、储能电池等领域提供高性能、高性价比
近日,百思凯新能源(上海)有限公司正式签署总投资32亿元的“动力电池高值化利用零碳工厂项目”,项目落地江苏淮安工业园区,标志着长三角新能源产业协同发展迈入新阶段。本项目总占地面积380亩,建成后将实现年处理30万吨退役动力电池、年产2万吨电池级碳酸锂、10万吨再生电池级磷酸铁的战略目标,同
北极星储能网获悉,5月19日,天力锂能集团股份有限公司发布股东减持股份的预披露公告。持有天力锂能集团股份有限公司股份7,692,307股,占公司总股本比例6.48%的股东安徽高新投新材料产业基金合伙企业计划自本公告披露之日起15个交易日后的未来3个月内以集中竞价方式、大宗交易方式减持本公司股份不超过
北极星储能网获悉,5月19日消息,宁新新材在投资者关系活动中表示,公司高纯石墨使用在钠电池的正极材料和负极硬碳材料烧结,代表客户有钠能时代、容钠、钠科、珈钠、英钠等。在固态电池中,主要应用于固态电解质,因目前这个行业技术保密,且没有完全产业化,与客户签的合同有保密要求。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!