北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能市场分布式能源市场正文

日本分布式能源互联网应用现状及其对中国的启示

2018-02-05 08:22来源:分布式能源关键词:分布式能源能源互联网多能互补收藏点赞

投稿

我要投稿

4 日本分布式能源互联网典型案例

日本分布式能源互联网的应用实践主要是由东京燃气、大阪燃气等几大能源公司推动。下面分别介绍当前各大公司正在推进的典型案例。

4.1东京燃气熊谷分社热融通网络

根据日本于2008年修正的节能法,2000m2以下中小规模楼宇需要进行节能改造。在此背景下,东京燃气熊谷分社(建于1984年,建筑面积1400m2)和相邻的宾馆(建于1986年,建筑面积为8940m2)于2009年进行了协同节能改造,通过构建热融通系统,确立了新型能源面域利用模式。

如图2所示,改造前熊谷分社大楼屋顶已安装有太阳能集热器(72m2)、太阳热驱动吸收式制冷机(35.2kW)和燃气吸收式冷温水机(141kW),本次改造新设光伏发电系统(5kW)和基于燃气内燃机的热电联产设备(25kW)。

如图3所示,熊谷分社电负荷由光伏系统和内燃机供应,冷热需求由太阳能集热器和内燃机产生的余热供应。根据办公建筑用能特点,燃气公司大楼春秋两季热需求较少,其他季节的非工作时间和双休日热需求也较少,会产生多余热量;而相邻宾馆则具有全年较稳定的热需求。

因此,通过在两栋大楼之间安装热融通管道,可将熊谷分社太阳能集热器产生的余热融通至临近宾馆,以实现热能的最大限度利用,避免损失。若太阳能集热器产生的热量不够,可由热电联产机组回收的余热供应,从而节约能源且减少温室气体排放。据估计,通过上述改造,两栋建筑可实现年减排二氧化碳11t。

4.2大阪市岩崎智慧能源网络

大阪市岩崎地区拥有京瓷大阪体育场、永旺百货等大型设施。该地区早在1996年便建有岩崎能源中心,对区域内13家用户供热供冷;2013年开始,利用区域内热电联产系统作为特定电气事业,对5家用户供电。在区域内实现冷热电联供的同时,利用IT技术实施需求侧响应,确立了智慧能源网络架构。

如图4所示,岩崎能源中心由1个主站和3个分站构成,主站配有燃气直燃机、余热回收型吸收式制冷机、电制冷机、热水锅炉等。分站1位于ICC大楼内,设置有燃气内燃机和余热回收型吸收式制冷机,其产生的余热除自身使用外,亦可融通至主站。分站2位于地铁站附近,设置有燃气直燃机和燃气锅炉。分站3设置于2015年开业的大阪燃气公司宣传体验设施“hu+g”博物馆内,设置有余热回收型吸收式制冷机,其热源来自于大楼内热电联产系统产生的余热以及太阳热,剩余部分可以融通至主站。除上述各能源站外,区域建筑自身亦配置有不同类型的分布式能源系统,具体情况如图5所示。

永旺百货配有1630kW的热电联产机组,京瓷体育场配置有1000kW热电联产机组,“hu+g”博物馆配有停电对应型热电联产机组(420kW)、SOFC燃料电池(4kW)、太阳能集热器(120kW)、光伏发电系统(20kW)和蓄电池(50kW˙h)。区域内建筑用户与能源站进行电、热融通,从面域层面构建高效能源利用体系。

原标题:日本分布式能源互联网应用现状及其对中国的启示
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

分布式能源查看更多>能源互联网查看更多>多能互补查看更多>