北极星

搜索历史清空

  • 水处理
您的位置:电力评论正文

在竞争激烈的电力市场中 各售电主体如何优化交易策略使其收益最大?

2018-09-18 11:52来源:电网技术关键词:售电侧电力市场电力市场交易收藏点赞

投稿

我要投稿

从表6横纵向对比可以看出:1)随着不确定集的增大,风险成本呈下降趋势,运行成本呈上升趋势,总收益先增加后减小,在0.3处取得最大。结合2.2节可以看出,随着不确定集增加,风电出力波动区间越大,意味着交易策略能够应对更为极端的风电恶劣场景,因此能有效降低风电波动导致的弃风及切负荷量,进而风险成本随之减少;对运行成本而言,VPP需要加大可控燃气轮机组出力,以保证有足够应对风电波动的动态备用容量,这就导致运行成本增加,系统经济性下降。2)与两阶段鲁棒相比,静态鲁棒的运行成本、风险成本增大,总收益减小。这是因为两阶段鲁棒模型将部分决策变量(如:燃气轮机、可中断负荷等出力)放在内层优化中,能够针对不确定参数情况进行适应性调节,无需提前确定。因此相比静态鲁棒优化,两阶段鲁棒优化交易方案具有更强的抵御风险能力,经济性和鲁棒性得到极大的改善。

为了更清晰的对比两阶段鲁棒优化和静态鲁棒方法的性能,定义如下总收益相对差指标ΔG:

16.png

显然,相比静态鲁棒方法,两阶段鲁棒优化具有更好的经济性。随着βW的增大,两阶段鲁棒与静态鲁棒总收益相对差增大,表明两阶段鲁棒优化交易策略更能抵抗系统的不确定性。

5 结论

本文采用多虚拟电厂建立非合作博弈模型,各主体充分考虑其余竞争者的策略影响分别追求利益最大化。通过对整合不同分布式能源的多虚拟电厂系统进行算例分析得到以下结论:1)虚拟电厂整合资源对出清结果有着较大影响,较低的运行成本能够使得虚拟电厂处于低报价水平,在竞标中获得较大成功;2)聚合电动汽车并优化其充放电行为能够稳定虚拟电厂整体出力,提升其在电力市场中的竞争力;3)采用切负荷和弃风成本量化不确定性带来的风险,决策方案需兼顾鲁棒性与经济性,单方面的考虑鲁棒性或经济性都会导致虚拟电厂收益下降。

本文主要围绕电量交互形式进行优化,下一步将对VPP要素进行丰富,跳出以电为中心的思路,重点研究蓄冷蓄热等综合能源服务下的交易策略。

参考文献

[1] 中国中央国务院.关于进一步深化电力体制改革的若干意见[EB/OL].(2015-03-31)[2017-08-31]..

[2] 艾欣,周树鹏,赵阅群.含虚拟发电厂的电力系统优化运行与竞价策略研究[J].中国电机工程学报,2016,36(23):6351-6362. Ai Xin,Zhou Shupeng,Zhao Yuequn.Optimal operation and bidding strategies of power system with virtual power plants[J].Proceedings of the CSEE,2016,36(23):6351-6362(in Chinese).

[3] 陈春武,李娜,钟朋园,等.虚拟电厂发展的国际经验及启示[J].电网技术,2013,37(8):2258-2263. Chen Chunwu,Li Na,Zhong Pengyuan,et al.Review of virtual power plant technology abroad and enlightenment to China[J].Power System Technology,2013,37(8):2258-2263(in Chinese).

[4] 马春艳,董春发,吕志鹏,等.计及随机因素的商业型虚拟发电厂短期交易与优化运行策略[J].电网技术,2016,40(5):1543-1549. Ma Chunyan,Dong Chunfa,Lü Zhipeng,et al.Short-term trading and optimal operation strategy for commercial virtual power plant considering uncertainties[J].Power System Technology,2016,40(5):1543-1549 (in Chinese).

[5] Kardakos E G,Simoglou C K,Bakirtzis A G.Optimal offering strategy of a virtual power plant:a stochastic bi-level approach[J].IEEE Transactions on Smart Grid,2016,7(2):794-806.

[6] Pandžić H,Morales J M,Conejo A J,et al.Offering model for a virtual power plant based on stochastic programming[J].Applied Energy,2013,105(5):282-292.

[7] 周亦洲,孙国强,黄文进,等.计及电动汽车和需求响应的多类电力市场下虚拟电厂竞标模型[J].电网技术,2017,41(6):1759-1766. ZHou Yizhou,Sun Guoqiang,Huang Wenjin,et al.Strategic bidding model for virtual power plant in different electricity markets considering electric vehicles and demand response[J].Power System Technology,2017,41(6):1759-1766(in Chinese).

[8] Heifetz A.Game theory:interactive strategies in economics and management[M].Cambridge:Cambridge Univ.Press,2012:1-2.

[9] Myerson R B.Game theory:analysis of conflict[M].Harvard University Press,1997.

[10] 赵敏,沈沉,刘锋,等.基于博弈论的多微电网系统交易模式研究[J].中国电机工程学报,2015,35(4):848-857. Zhao Min,Shen Shen,Liu Feng,et al.Research on trading patterns of multi-microgrid systems based on game theory[J].Proceedings of the CSEE,2015,35(4):848-857(in Chinese).

[11] 赵文会,闫豪楠,何威.基于风火网非合作博弈的电力市场均衡模型[J].电网技术,2018,42(1):103-109. Zhao Wenhui,Yan Haonan,He Wei.Power market equilibrium model based on wind-fire network non-cooperative game[J].Power System Technology,2018,42(1):103-109(in Chinese).

[12] Wang Y,Ai X,Tan Z,et al.Interactive dispatch modes and bidding strategy of multiple virtual power plants based on demand response and game theory[J].IEEE Transactions on Smart Grid,2016,7(1):510-519.

[13] Tajeddini M A,Rahimi-Kian A,Soroudi A.Risk averse optimal operation of a virtual power plant using two stage stochastic programming[J].Energy,2014,73(9):958-967.

[14] Shayegan-Rad A,Badri A,Zanganeh A.Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties[J].Energy,2017,121.

[15] 梁子鹏,陈皓勇,王勇超,等.含电动汽车的微网鲁棒经济调度[J].电网技术,2017,41(8):2647-2656. Liang Zipeng,Chen Haoyong,Wang Yongchao,et al.Robust economic dispatch of microgrids containing electric vehicles[J].Power System Technology,2017,41(8):2647-2656(in Chinese).

[16] 仉梦林,胡志坚,李燕,等.基于可行性检测的考虑风电和需求响应的机组组合鲁棒优化方法[J/OL].中国电机工程学报,DOI:10.13334/j.0258-8013.pcsee.170654. Yu Menglin,Hu Zhijian,Li Yan,et al.A robust optimization method for unit combination considering wind power and demand response based on feasibility detection[J/OL].Proceedings of the CSEE,DOI:10.13334/j.0258-8013.pcsee.170654(in Chinese).

[17] 左坤雨,刘友波,向月,等.基于信息互动的分布式可再生能源多代理交易竞价模型[J].电网技术,2017,41(8):2477-2484. Zuo Kunyu,Liu Youbo,Xiang Yue,et al.Multi-agent transaction bidding model for distributed renewable energy based on information interaction[J].Power System Technology,2017,41(8):2477-2484(in Chinese).

[18] 牛文娟,李扬,王蓓蓓.考虑不确定性的需求响应虚拟电厂建模[J].中国电机工程学报,2014,34(22):3630-3637. Niu Wenjuan,Li Yang,Wang Beibei.Demand response based virtual power plant modeling considering uncertainty[J].Proceedings of the CSEE,2014,34(22):3630-3637(in Chinese).

[19] 赵兴勇,王帅,吴新华,等.含分布式电源和电动汽车的微电网协调控制策略[J].电网技术,2016,40(12):3732-3740. Zhao Xingyong,Wang Shuai,Wu Xinhua,et al.Coordinated control strategy research of micro-grid including distributed generations and electric vehicles[J].Power System Technology,2016,40(12):3732-3740(in Chinese).

[20] Bakirtzis A G,Ziogos N P,Tellidou A C,et al.Electricity producer offering strategies in day-ahead energy market with step-wise offers[J].IEEE Transactions on Power Systems,2007,22(4):1804-1818.

[21] Fotouhi A,Auger D J,Propp K,et al.A review on electric vehicle battery modelling:from Lithium-ion toward Lithium-Sulphur[J].Renewable & Sustainable Energy Reviews,2016(56):1008-1021.

[22] Zeng B,Zhao L.Solving two-stage robust optimization problems using a column-and-constraint generation method[J].Operations Research Letters,2013,41(5):457-461.

[23] 许少伦,严正,冯冬涵,等.基于多智能体的电动汽车充电协同控制策略[J].电力自动化设备,2014,34(11):7-13. Xu Shaolun,Yan Zheng,Feng Donghan,et al.Collaborative ging strategy for electric vehicles based on multi-agent[J].Electric Power Automation Equipment,2014,34(11):7-13(in Chinese).

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

售电侧查看更多>电力市场查看更多>电力市场交易查看更多>