登录注册
请使用微信扫一扫
关注公众号完成登录
式中:φ 为求解变量(质量、动量和能量等变量),ρ为气体密度,xj为j 方向上的积分,μi为i方向上的速度矢量,Γφ为扩散系数,Sφ为源项.
1.2几何模型与网格划分
自2006年起,为了展示清洁、安全的氢燃料电池汽车,推动氢能基础设施建设,中国大陆先后建成5座示范运行的加氢站.现以上海世博加氢站为例,对高压氢气泄漏及爆炸后果进行模拟分析。该加氢站南北长60m,东西长50m,四周空旷,以自西向东方向建立X轴,自南向北方向建立Y轴,竖直向上方向建立Z轴,计算区域扩大为85m×80m×10m,几何模型如图1所示。
该站采用35MPa压力对氢燃料汽车进行加注,可能发生氢气泄漏的储氢系统包括拖车储氢瓶(16MPa),高压储氢气瓶(39MPa)和加注机(43.8MPa)[8]。其中,高压储氢气瓶储氢时间长、储氢容量大、储氢压力高,瓶组仪表管道破损最常见,易引发泄漏事故.本文针对高压储氢气瓶100%直径仪表管道损坏后的泄漏及爆炸进行模拟研究,气瓶容积为0.89m3,泄漏孔直径为10mm。障碍物会阻碍氢气扩散,增大可燃气云积聚的风险,所以泄漏点、泄漏方向和风向的设定使高压喷射氢气进入储氢气瓶、压缩机和拖车储氢瓶所围成的高拥塞度障碍区域。泄漏点位于气瓶中部,高压氢气沿X轴正方向泄漏,环境风速为1m/s,风向也为X轴正方向。在环境温度范围内,氢气密度的变化较小,泄漏量受温度的影响较小,假设瓶内气体温度和环境温度相等,均为常温15℃。
为了精确捕捉高压氢气高速喷射时的体积分数变化,在扩散求解模型中对泄漏点附近网格进行局部加密,在边界区域适当将网格拉伸以减少网格数量,缩短运算时间,网格划分如图2所示。
1.3泄漏量计算
绝大多数高压氢气泄漏扩散初期属于亚膨胀射流,泄漏口处的速度为当地声速,但压力高于大气压力,氢气在在泄漏口外的一定区域内进一步膨胀至与环境压力相同[9],如图3所示。当氢气压力高于10~20MPa时,理想气体状态方程已不再适用。Molkov等[10]基于Abel-Noble状态方程以及能量和质量守衡方程推导得出高压氢气亚膨胀射流的质量流量计算方法:
式中:ρ1为气瓶内氢气密度;p1为气瓶内压力,p1=39 MPa;b 为Abel-Noble余容系数,b=7.69×10-3;RH2为氢气气体常数,RH2 =4 124.24J·(kg·K)-1;T1为气瓶内氢气温度,T1=288K;κ为绝热指数,对于氢气取1.4;ρ3为真实泄漏口处氢气密度;T3为真实泄漏口处氢气温度;p3为真实泄漏口处氢气压力;u3为真实泄漏口处氢气速度;qm为质量泄漏流量;d 为泄漏孔直径,d=10mm.通过计算得到质量泄漏流量为1.67kg/m3.假设氢气以恒定速度泄漏,则0.89m3 的39MPa高压储氢气瓶总泄漏时长为14s.
2扩散模拟结果及分析
如图4所示为高压储氢气瓶泄漏后不同时刻的氢气可燃气云图(氢气体积分数为4%~74%)。可以看出,在泄漏结束(14s)前,可燃气云体积持续增大,且因为氢气密度远小于空气,呈现不断上升的状态。受障碍物的限制,防爆墙和压缩机附近的可燃气云主要向上扩展,拖车储氢瓶附近的氢气可以沿拖车底部及气瓶间空隙横向扩散,在地表形成较大面积的可燃气云,增大了被点燃的风险。同时,较小的环境风速对氢气水平方向扩散速度影响甚微,可燃气云几乎垂直上升。在泄漏停止(14s)后,氢气进一步扩散,体积分数不断减小,可燃气云体积逐渐减小,至泄漏28s后,完全消失。
综上可以得出,尽管泄漏孔径只有10mm,但高压氢气泄漏和可燃气云扩散速度极快,工作人员根本没有时间采取措施控制泄漏事故的扩大,该类事故应以预防为主。对于该站的布置情况,当环境风速较小时,可燃氢气云始终被限制在储氢气瓶、压缩机和拖车储氢瓶所围成的高拥塞度障碍区域,并未大规模扩散至加注机和控制室等人员较密集的场所,在高压储氢区域外设置封闭设施是有效的控制泄漏可燃气云扩散的方法。
3爆炸模拟结果及分析
若在泄漏形成氢气可燃气云的基础上点燃氢气,就会发生爆炸事故,本文对爆炸过程进行模拟。由图4可知,泄漏结束时(14s)可燃气云体积最大,被点燃的概率也最大,因此选择在此时将氢气点燃。压缩机内含有大量电气、电子设备,容易形成电火花而点燃氢气,将点火位置设定为压缩机附近。
如图5、6所示分别为X-Y截面和Y-Z截面爆炸超压随时间的分布图.氢气可燃气云点火爆炸后,超压逐渐由点燃位置以恒定值平稳向外传播(0~0.025s)。当遇到站内密集管道及设备时,如高压储氢气瓶、压缩机和防爆墙等,超压明显增强,且由图5(b)、(c)、(d)对比可知,障碍区域拥塞度越大,爆炸超压越强(0.05~0.09s),最大可以增至350kPa,是空旷区域超压的50倍.这是因为,在障碍区域氢气可燃气云内混合气体的湍流程度较强,燃烧波面与未燃气体的接触面积较大,从而加快了气体化学反应速率,即燃烧速率[11],气体瞬间吸收大量燃烧产热后体积急剧膨胀,超压迅速上升;此外,超压波在障碍物壁面上反射,与火焰锋面相遇并相互作用,使得未燃烧气体全部参与燃烧,加剧了热量释放和气体体积膨胀,超压进一步增强。其中,高压储氢气瓶局部最大的超压为350kPa,小于能够承受的最大压力,因此不会造成其他气瓶的损坏,引发进一步的连续爆炸事故而产生更严重的后果。防爆墙的局部最大超压为60kPa,低于可致其破坏的超压值。随着时间的推移(0.09~0.15s),超压波可以越过防爆墙向外继续扩张,但强度逐渐减弱,直至0.15s完全消失殆尽。
可燃氢气云爆炸产生超压对人和建筑物均会造成伤害,本文选用的超压伤害准则如表1所示。为了保障加氢站发生重大事故时的人身安全,需要确定爆炸事故对人造成严重危害的影响距离[12](以下简称危害距离)作为加氢站制定事故应急预案的重要依据。
氢气可燃气云爆炸的危害区域随时间分布如图7所示.深色部分对应的超压为7kPa。可燃气云自点燃后,危害区域可在0.15s的时间内由点燃位置以不规则形状向外扩张,在向控制室以及拖车储氢瓶方向传播过程中,受障碍物的阻挡迅速消退,而在较空旷的加注区域继续延伸,最大危害距离可达32.2m。由模拟结果可知,氢气可燃气云在体积最大时被点燃,爆炸危害区域可以覆盖几乎整个加氢站,对暴露在室外的人员造成伤害,而控制室外墙上的超压小于可对墙体造成破坏的容限值,因此,位于控制室内的人员相对安全。
4不同环境风速的影响
为了进一步研究不同环境风速对加氢站高压氢气泄漏后爆炸事故的影响规律,分别对风速为1、3、5、7、9、12m/s时的爆炸场景进行模拟。
较大的环境风速可能加剧了氢气可燃气云内混合气体的湍流程度,导致爆炸强度显著增强.如表2所示为模拟得到的不同环境风速防爆墙和氢气压缩机处最大超压。可以看出,爆炸超压随风速的增大而增大。当环境风速>9m/s时,防爆墙处的最大超压已超过其可以承受的最大压力,不再具备防爆保护能力,严重威胁控制室内人员的安全。氢气压缩机处的最大超压随风速的增加可由50kPa增至230kPa,需要在压缩机外部设置足够强度的防爆保护设施,以免造成氢气压缩机的损坏,引发更大规模的高压氢气泄漏和爆炸,加重事故后果。
针对上海世博加氢站,将FLACS模拟得到的危害距离与文献[15]的计算结果进行对比,如表3所示。李志勇等[15]采用基于扩散模型与Baker-Stre-hlow气云爆炸模型相结合的传统方法,针对同样的泄漏条件,确定了可对人造成伤害的危害距离。
从表3可以看出,不同环境风速的爆炸场景,经验公式偏保守,计算得到的危害距离较FLACS模拟结果均高20%~30%。此外,采用2种方法得到的危害距离随环境风速变化的规律不同:利用经验公式计算得到的危害距离随风速的增大而不断增大,通过FLACS模拟得到的危害距离随风速的增大呈先减小后增大的趋势。这可能是因为较大的风速在使可燃气云沿横向方向运动、增大其在顺风方向爆炸影响范围的同时,也加剧了氢气向四周的扩散运动,具有一定的稀释作用,使得氢气体积分数降低,可燃气云的体积减小。如图8所示为不同环境风速下,高压氢气泄漏12s时的可燃气云分布图。对于设备管道复杂密集、结构布置复杂的加氢站等场所,经验公式难以很好地适用。
5结论
(1)基于FLACS的数值模拟方法能够实现高压氢气泄漏爆炸事故全过程的模拟,对爆炸超压波进行实时的三维展示,有助于认清爆炸事故的发生过程及发展规律,可以为加氢站装置应急状态下的防护区域划分、事故调查等提供依据。
(2)爆炸强度在障碍区域明显增强,且障碍区域拥塞度越大,爆炸超压越强,最大可以增至空旷区域超压的50倍。采用数值模拟方法可以实现对拥塞区域局部超压的预测,而基于经验公式的传统方法无法做到。
(3)随着环境风速的增加,爆炸强度随之增大,当环境风速超过9m/s时,该加氢站的防爆墙已无法阻挡爆炸超压波的传播,此外,需要在氢气压缩机外部设置足够强度的防爆设施,以免引起进一步的高压氢气泄漏和爆炸,加重事故的严重性。
(4)对比危害距离模拟值与经验公式计算值发现:不同环境风速的高压氢气泄漏爆炸事故,采用经验公式计算得到的危害距离均略高于FLACS的模拟结果,较保守。
参考文献(References):
[1]郑津洋,李静媛,黄强华,等.车用高压燃料气瓶技术发展趋势和我国面临的挑战[J].压力容器,2014,31(2):43-50.
ZHENG Jin-yang,LI Jing-yuan,HUANG Qiang-hua,etal.Technology trends of high pressure vehicle fuel tanks and challenges for china [J].Pressure Vessel,2014,31(2):43-50.
[2]Ludwig-Blkow-Systemtechnik GmbH.Hydrogen filling stations worldwide [EB/OL].2014-06-16.http:∥.
[3]冯文,王淑娟,倪维斗,等.氢能的安全性和燃料电池汽车的氢安全问题[J].太阳能学报,2003,24(5):677-681.
FENG Wen,WANG Shu-juan,NI Wei-dou,et al.The safety of hydrogen energy and fuel cell vehicles [J]Journal of Solar Energy,2003,24(5):677-681.
[4]张方敏,徐冰,尹新,等.氯化氢事故泄漏扩散的后果模拟分析[J].安全与环境学报,2011,11(4):193-196.
ZHANG Fang-min,XU Bing,YIN Xin,et al.Simulation analysis on accident consequence of hydrogen chloride leakage and dispersion[J].Journal of Safety and Environment,2011,11(4):193-196.
[5]KIM E,PARK J,CHO J H,et al.Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea[J].International Journal of Hydrogen Energy,2013,38(3):1737-1743.
[6]MIDDHA P,HANSEN O R,GROETHE M,et al.Hydrogen explosion study in a confined tube:FLACS CFD simulations and experiments[C]∥ Proceedings of the 21st International Colloquium of Dynamics of Explosions and Reactive Systems.Poitou:University of Poitiers,2007.
[7]PRANKUL M,OLAV R H.Using computational fluid dynamics as a tool for hydrogen safety studies[J].Journal of Loss Prevention in the Process Industries,2009,22(3):295-302.
[8]LI Zhi-yong,PAN Xiang-min,MA Jian-xin.Quantitative risk assessment on 2010Expo hydrogen station[J].International Journal of Hydrogen Energy,2011,36(6):4079-4086.
[9]MOLKOV V.Fundamentals of hydrogen safety engineering[M].London:Ventus Publishing ApS,2012.
[10]MOLKOV V,MAKAROV D,BRAGIN M.Physics and modelling of under-expanded jets and hydrogen dispersion in atmosphere[J].Physics of Extreme State of Matter,2009,11(6):143-145.
[11]KENNETH K.Principles of combustion [M].New York:Wiley,2005.
[12]赵文芳.化学品事故应急响应中危害距离的确定[J].中国安全生产科学技术,2009,5(4):171-174.
ZHAO Wen-fang.Determination of hazard distance in the chemicals accidents emergency[J].Journal of Safety Science and Technology,2009,5(4):171-174.
[13]IGO Doc 75/07/E/rev,Determination of safety distances[S].[S.l.]:European Industrial Gases Association,2007.
[14]刘诗飞,詹予忠.重大危险源辨识及危害后果分析[M].北京:化学工业出版社,2004:94-96.
[15]李志勇,潘相敏,马建新.加氢站氢气事故后果量化评价[J].同济大学学报:自然科学版,2012,40(2):286-291.
LI Zhi-yong,PAN Xiang-min,MA Jian-xin.Quantitative assessment on hydrogen releases of hydrogen refueling station by consequence modeling[J].Journal of Tongji University:Natural Science,2012,40(2):286-291.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
国华投资国华(赤城)风电有限公司氢气运输服务公开招标项目中标候选人公示国华投资河北分公司赤城制氢厂位于河北省张家口市赤城县经济开发区,该项目用自有新能源电源开展电解水制氢,项目总氢气产能为4000Nm/h,一期建设2000Nm/h(折合4272kg/d),二期预留用地(规模2000Nm/h)。产品氢纯度为99.999
7月10日,青岛市人民政府印发《青岛市加快经济社会发展全面绿色转型实施方案》。文件提出,积极稳妥发展非化石能源。积极布局海洋新能源,在青岛西海岸新区、即墨区海域集中开发海上风电,加快深远海海上风电项目和即墨区海上光伏项目建设,谋划储备远海漂浮式光伏项目,力争2030年建成千万千瓦级海上
7月14日,石家庄市长安区西庄综合能源站项目(一期)施工项目招标公告发布。公告显示,该项目业主为石家庄市交投新能源有限公司,主要建设规模及内容:本项目为加油、加氢、光伏、储能、充电桩为一体的综合能源站。一期建设加油、光伏、充电桩、储能部分,二期建设加氢部分。加油部分:新建二层框架结
北极星售电网获悉,7月10日,山东青岛市人民政府发布关于印发《青岛市加快经济社会发展全面绿色转型实施方案》(以下简称《方案》)的通知。《方案》指出,加快构建新型电力系统。统筹本地电网结构优化和互联输电通道建设,推进琅琊、寨里等500千伏骨干电网工程。加快微电网、虚拟电厂、源网荷储一体化
7月7日,中集安瑞科能源系统(上海)有限公司(以下简称“中集安瑞科上海”)与江苏中纯氢能科技有限公司(以下简称“江苏中纯”)正式签署氢能业务战略合作协议。双方就采用液驱氢能压缩机在绿氢以及氢交通领域的优势展开探讨并达成一致,充分发挥各自在氢能产业链上的技术专长与资源优势,共同推动绿
近日,成都市发布了《关于开展2025年度成都市氢燃料电池商用车示范应用项目(第一批)申报工作的通知》(以下简称《通知》)。根据《通知》,成都将以“揭榜挂帅”方式稳步推进氢燃料电池商用车示范推广工作,2025年分两批次推广1000辆氢燃料电池商用车,其中第一批推广500辆。氢燃料电池商用车示范应
北极星氢能网获悉,7月3日,广州市发改委发布了《广州市发展和改革委员会关于广州市新能源汽车数据接入市级监测平台的补充通知》(以下简称《通知》)。《通知》提出,广州市市在原广州市新能源智能汽车大数据监测平台的基础上,建成并全面上线氢燃料电池汽车及加氢站管理模块,现启动相关数据接入工作
据不完全统计,2025年1-6月,除已上市氢能企业增发募资外,氢能产业链共计超过20家企业获得融资,与去年同期相比数量有所减少,具体包括:考克利尔氢能、卡文新能源、云韬氢能、骊能新能源、新工绿氢、未势能源、氢合科技、科安创能、艾氢技术、锦美氢源、镁源动力、天芮科技、青鳐科技、聚智合众、协
氢燃料电池是目前氢能产业中技术最成熟、应用最广泛的核心产品之一,在全球积极应对气候变化并大力推动能源转型的背景下,氢燃料电池作为一种高效且清洁的能源转化设备,成为各国政府、科研机构和企业开展能源技术攻关的重点方向,并推动其在多个领域的应用和商业化进程。根据电解质的不同,氢燃料电池
国家主席习近平在第75届联合国大会上宣布“中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”。“双碳”目标为氢能产业高质量发展提供了根本遵循。2022年3月,国家发改委、国家能源局印发《氢能产业发展中长期规划(2021~2035年)》,要求逐步推动构建清洁化、低碳化、低成本的
为进一步贯彻落实《氢能产业发展中长期规划》要求,引导行业健康有序发展,国家能源局组织行业相关机构和专家编制了《中国氢能发展报告(2025)》(以下简称《报告》)。4月28日,国家能源局能源节约和科技装备司副司长徐继林在解读《报告》时称,发展氢能产业对加快规划建设新型能源体系,实现碳达峰
北极星氢能网获悉,3月17日,山东省公共资源发布有关于氢能高速及零碳服务区关键技术集成与示范高密服务区加氢站综合利用项目资格预审公告(代招标公告),公告显示:本招标项目为氢能高速及零碳服务区关键技术集成与示范高密服务区加氢站综合利用项目已取得山东省建设项目备案证明(代码2306-370700-8
10月27日,潍坊市第5座加氢站—宝通街凯豪达加油加氢合建站完成设备调试,进入试运行阶段。该项目位于宝通街月河路西南侧,2020年11月开工,设有加氢站、加油站两部分,其中,加氢站内配备加氢机3台,设计氢气存储规模1000kg,每日可满足50-60台燃料电池大巴或100台燃料电池物流车加氢需求,年加注氢气
近日,北京、上海、广东报送的城市群启动实施燃料电池汽车示范应用工作获批复,这对示范城市群和燃料电池汽车产业而言,均是利好。当然,利好能否落地,示范能否真正发挥作用,不仅在于相关部门强有力的支持、地方政府不打折扣的落实,更取决于燃料电池汽车全产业链能否协同创新。
美国空气化工产品(中国)投资有限公司(以下简称:空气化工)在氢能布局上再落一棋。空气化工拟斥资1800万美元在山东淄博恒台县氢能综合利用项目。该项目将利用东岳集团的富余氯碱氢和空气化工领域的纯化技术,制备高纯度氢气,并在淄博投资运营加氢站。日前,该项目已在山东省重点外商投资项目签约会
作为给氢燃料电池汽车提供氢气的基础设施,加氢站的数量直接影响了燃料电池汽车的商业化进程。当前,为推进燃料电池汽车的商业化应用,全球范围都在进行加氢站的建设投资。(来源:微信公众号“势银能链”ID:energylink作者:Demi)根据新兴产业研究与顾问公司TrendBank数据,截至目前,国内建成加氢
最近两年,碳纤维储氢技术成为国内关注和研究热点,其实早在数十年前国外便已经开展大量研究工作。为了提高储氢瓶的容积量、可靠性和耐用性,同时不断降低生产成本,欧盟、美国能源部在最近十几年提出多项专项项目支持该领域研究工作。以美国在该领域研究为例,在2006年-2009年美国能源部氢能计划(DOE
北极星氢能网获悉,7月17日,国蒙氢能科技(巴彦淖尔)有限公司甘其毛都口岸加工园区绿电制氢项目(一期)EPC招标结果公示:项目名称:国蒙氢能科技(巴彦淖尔)有限公司甘其毛都口岸加工园区绿电制氢项目(一期)。建设地点:巴彦淖尔市-乌拉特中旗-甘其毛都口岸加工园区经四路西,中轴路北,经三路东,远鑫公
北极星氢能网获悉,2025年7月15日,康明斯恩泽(广东)氢能源科技有限公司(简称“康明斯恩泽”)完成企业名称变更,正式更名为“恩泽(广东)氢能源有限公司”(简称“恩泽氢能”)。康明斯恩泽氢能成立于2021年12月,由中国石化资本公司发起设立的恩泽基金与康明斯按50:50比例共同出资组建。康明斯恩
7月18日,国务院新闻办公室举行新闻发布会,介绍2025年上半年工业和信息化发展情况。工业和信息化部总工程师谢少锋,部新闻发言人、运行监测协调局局长陶青,部信息通信发展司司长谢存出席发布会,介绍相关情况并回答记者提问。上半年工业和信息化事业发展态势良好新型工业化加快推进工业和信息化部总
砥砺奋进的十年系列报道之三——创新驱动十年间,国家电投锚定高水平科技自立自强,持续深化科技创新体制改革,研发投入强度从0.91%跃升至3.5%,累计建成一支1.3万人的科技研发队伍,形成央企领先的创新力量。十年间,肩负“国之大者”,锻造“国之重器”,作为同时牵头两个国家科技重大专项的能源央企
北极星氢能网获悉,7月15日,安徽省第三批氢能环卫车批量投运交付仪式在六安市金安区举行。本批共交付8辆18吨氢能环卫洗扫车,开创了安徽省氢能环卫批量化运营的新局面。运营车辆为18吨燃料电池洗扫车,由明天氢能联合中联重科盈峰环境联合开发,搭载明天氢能公司101kW高性能燃料电池系统,百公里氢耗
北极星氢能网获悉,近日,由北方稀土贮氢公司主导开发的氢能电动两轮车正式上线。记者走进该公司,率先一睹这款新车的独特风采。在北方稀土贮氢公司办公楼门前,一排排氢能电动两轮车整齐列队。蓝绿相间的车体色彩明快亮眼,车筐里的橙色头盔尤为醒目,车身一侧的包钢集团标志格外引人注目。车头嵌入的
北极星氢能网获悉,近日,绿氨技术创新企业中科亿氨新能源科技(常州)有限公司(简称“中科亿氨”)宣布完成数千万元种子轮融资,由中科创星投资。此次融资资金将主要用于技术研发、设备采购、市场推广和团队扩充。据悉,中科亿氨成立于2025年2月,以“做绿氨行业引领者,用世界领先科技,创造洁净环
北极星氢能网获悉,7月16日,国华投资国华(如东)新能源有限公司国华如东光氢储一体化制氢项目EPC总承包公开招标:本项目位于江苏省南通市如东洋口港经济开发区豫东垦区老海堤东侧、内部农路南侧。制氢规模为1500Nm³/h,制氢站与集中式光伏就近布置,采用集中式光伏所发绿色电力进行制氢,提升绿氢制
7月9日,市场监管总局、工业和信息化部发布了关于印发《计量支撑产业新质生产力发展行动方案(2025—2030年)》的通知,其中提到,面向太阳能、风能、核能、氢能、海洋能、生物质能、地热能等领域,围绕关键核心技术装备自主化发展、能源生产储运基础设施建设、储能系统及相关装备研究及产业化等方向计
当前,能源产业生态正经历从“供给侧资源主导”向“需求侧价值创造”的范式跃迁。现代能源服务业通过构建“用户需求-能效服务-价值共享”的新型商业闭环,催生出涵盖规划咨询、系统集成、智慧运维的全周期解决方案。为把握产业变革机遇,北极星电力网拟于2025年8月7-8日在上海举办2025第七届综合能源服
北极星售电网获悉,7月16日,江苏南通市政府办公室关于印发南通市加快推进生产性服务业高质量发展行动方案(2025—2027年)的通知。文件明确,探索低碳节能服务发展路径。积极引进国内外权威认证组织在通设立分支(合作)机构,提供“一站式”涉碳类认证和咨询服务,推动重点产品碳足迹的国际衔接互认
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!