北极星

搜索历史清空

  • 水处理
您的位置:电力火电火电产业报道正文

“双碳”目标下火电企业绿色低碳转型的对策分析

2021-10-13 14:24来源:《华电技术》作者:赵国涛 钱国明 王盛 丁泉 朱海东关键词:火电企业煤电转型火力发电收藏点赞

投稿

我要投稿

参考文献

[1]

胡鞍钢.

中国实现 2030 年前碳达峰目标及主要途径

[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.

[本文引用: 1]

HU Angang.

China's goal of achieving carbon peak by 2030 and its main approaches

[J]. Journal of Beijing University of Technology(Social Sciences Edition), 2021, 21(3): 1-15.

[本文引用: 1]

[2]

李政, 陈思源, 董文娟, 等.

碳约束条件下电力行业低碳转型路径研究

[J/OL]. 中国电机工程学报, 2021.(2021-05-11)[2021-08-12]. https://doi.org/10.13334/j.0258-8013.pcsee.210671.

URL [本文引用: 1]

LI Zheng, CHEN Siyuan, DONG Wenjuan, et al.

Low carbon transition pathway of power sector under carbon emission constraints

[J/OL]. Proceedings of the CSEE, 2021.(2021-05-11)[2021-08-12]. https://doi.org/10.13334/j.0258-8013.pcsee.210671.210671.

URL [本文引用: 1]

[3]

蒋长流, 江成涛.

基于低碳转型的环境管理职能变革研究

[J]. 环境与可持续发展, 2019(5): 109-113.

[本文引用: 1]

JIANG Changliu, JIANG Chengtao.

Study on change of environmental management function based on low carbon transition

[J]. Environment and Sustainable Development, 2019(5): 109-113.

[本文引用: 1]

[4]

刁心薇, 曾珍香, 孙丞.

混合碳政策下制造商低碳转型的技术选择策略研究

[J]. 控制与决策, 2021, 36(7): 1763-1770.

[本文引用: 1]

DIAO Xinwei, ZENG Zhenxiang, SUN Cheng.

Research on technology ion in low carbon transition of the manufacturer under mixed carbon policy

[J]. Control and Decision, 2021, 36(7): 1763-1770.

[本文引用: 1]

[5]

杨双萍.

中国高碳产业低碳转型动力研究

[D]. 镇江:江苏大学, 2019.

[本文引用: 1]

[6]

张小丽, 刘俊伶, 王克, 等.

中国电力部门中长期低碳发展路径研究

[J]. 中国人口·资源与环境, 2018, 28(4): 68-77.

[本文引用: 1]

ZHANG Xiaoli, LIU Junling, WANG Ke. et al.

Study on medium and long-term low-carbon development pathway of China's power sector

[J]. China Population,Resources and Environment, 2018, 28(4): 68-77.

[本文引用: 1]

[7]

张运洲, 张宁, 代红才, 等.

中国电力系统低碳发展分析模型构建与转型路径比较

[J]. 中国电力, 2021, 54(3): 1-11.

[本文引用: 1]

ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al.

Model construction and pathways of low-carbon transition of China's power system

[J]. Electric Power, 2021, 54(3): 1-11.

[本文引用: 1]

[8]

李政, 陈思源, 董文娟, 等.

现实可行且成本可负担的中国电力低碳转型路径

[J]. 洁净煤技术, 2021, 27(2): 1-7.

[本文引用: 1]

LI Zheng, CHEN Siyuan, DONG Wenjuan, et al.

Feasible and affordable decarbonization pathways of China's power sector

[J]. Clean Coal Technology, 2021, 27(2): 1-7.

[本文引用: 1]

[9]

张文华, 闫庆友, 何钢, 等.

气候变化约束下中国电力系统低碳转型路径及策略

[J]. 气候变化研究进展, 2021, 17(1): 18-26.

[本文引用: 1]

ZHANG Wen Hua, YAN Qing You, HE Gang, et al.

The pathway and strategy of China's power system low-carbon transition under the constraints of climate change

[J]. Climate Change Research, 2021, 17(1): 18-26.

[本文引用: 1]

[10]

邓旭, 谢俊, 滕飞.

何谓“碳中和”?

[J]. 气候变化研究进展, 2021, 17(1): 107-113.

[本文引用: 1]

DENG Xu, XIE Jun, TENG Fei.

What is carbon neutrality?

[J]. Climate Change Research, 2021, 17(1): 107-113.

[本文引用: 1]

[11]

清华大学中国碳市场研究中心, 北京中创碳投科技有限公司. 地方政府参与全国碳市场工作手册.[R]2019.

[本文引用: 1]

[12]

张九天, 张璐.

面向碳中和目标的碳捕集、利用与封存发展初步探讨

[J]. 热力发电, 2021, 50(1): 1-6.

[本文引用: 1]

ZHANG Jiutian, ZHANG Lu.

Preliminary discussion on development of carbon capture, utilization and storage for carbon neutralization

[J]. Thermal Power Generation, 2021, 50(1): 1-6.

[本文引用: 1]

[13]

肖云鹏, 王锡凡, 王秀丽, 等.

面向高比例可再生能源的电力市场研究综述

[J]. 中国电机工程学报, 2018, 38(3): 663-674.

[本文引用: 1]

XIAO Yunpeng, WANG Xifan, WANG Xiuli, et al.

Review on electricity market towards high proportion of renewable energy

[J]. Proceedings of the CSEE, 2018, 38(3): 663-674.

[本文引用: 1]

[14]

赵国涛, 丁泉, 付军华, 等.

基于多市场联动的区域能源系统低碳路径研究

[J]. 电力建设, 2021, 42(3): 19-26.

[本文引用: 1]

ZHAO Guotao, DING Quan, FU Junhua, et al.

Research on the low-carbon implementation path of regional energy system relying on the linkage mechanism of multi-markets

[J]. Electric Power Construction, 2021, 42(3): 19-26.

[本文引用: 1]

[15]

王宣元, 马莉, 曲昊源.

美国得克萨斯州风电消纳的市场运行机制及启示

[J]. 中国电力, 2017, 50(7): 10-27.

[本文引用: 1]

WANG Xuanyuan, MA Li, QU Haoyuan.

Market mechanisms for wind generation in ERCOT market and the inspiration for China

[J]. Electric Power, 2017, 50(7): 10-27.

[本文引用: 1]

[16]

刘志清, 王春义, 王飞, 等.

储能在电力系统源网荷三侧应用及相关政策综述

[J]. 山东电力技术, 2020, 47(7): 1-21.

[本文引用: 1]

LIU Zhiqing, WANG Chunyi, WANG Fei, et al.

Source-grid-load application of energy storage in electric power system and related policy overview

[J]. Shandong Electric Power, 2020, 47(7): 1-21.

[本文引用: 1]

[17]

杨晟, 孙跃, 龚钢军, 等.

基于能源区块链的综合能源服务研究

[J]. 华电技术, 2020, 42(8): 11-16.

[本文引用: 1]

YANG Sheng, SUN Yue, GONG Gangjun, et al.

Research on integrated energy services based on energy blockchain

[J]. Huadian Technology, 2020, 42(8): 11-16.

[本文引用: 1]

[18]

马宝忠, 杨蓬, 孙聪, 等.

基于虚拟现实技术的变电站交直流电源仿真设计

[J]. 科学技术与工程, 2021, 21(2): 591-596.

[本文引用: 1]

MA Baozhong, YANG Peng, SUN Cong, et al.

Simulation design of AC and DC power supply in substation based on virtual reality technology

[J]. Science Technology and Engineering, 2021, 21(2): 591-596.

[本文引用: 1]

[19]

孙文文, 何国庆, 刘纯, 等.

物联网背景下应用于光伏发电的边缘计算设备关键技术研究及应用

[J]. 电力自动化设备, 2021, 41(7): 38-43.

[本文引用: 1]

SUN Wenwen, HE Guoqing, LIU Chun, et al.

Research and application of key technologies for edge computing equipment used in photovoltaic power generation under background of IoT

[J]. Electric Power Automation Equipment, 2021, 41(7): 38-43.

[本文引用: 1]

[20]

董世丹傑, 杨超, 姜燕, 等.

基于物联网的光伏并网配电网自愈控制方法研究

[J]. 电气自动化, 2021, 43(1): 48-50.

[本文引用: 1]

DONG Shidanjie, YANG Chao, JIANG Yan, et al.

Research on self-healing control method for photovoltaic grid-connected distribution networks based on the Internet of Thing

[J]. Electrical Automation, 2021, 43(1): 48-50.

[本文引用: 1]

[21]

卓振宇, 张宁, 谢小荣, 等.

高比例可再生能源电力系统关键技术及发展挑战

[J]. 电力系统自动化, 2021, 45(9): 171-190.

[本文引用: 2]

ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al.

Key technologies and developing challenges of power system with high proportion of renewable energy

[J]. Automation of Electric Power Systems, 2021, 45(9): 171-190.

[本文引用: 2]

[22]

苗彤宇.

电、煤矛盾对 B 电厂生产成本的影响及对策研究

[D]. 长春:吉林大学, 2020.

[本文引用: 1]

[23]

刘亚东, 陈思, 丛子涵, 等.

电力装备行业数字孪生关键技术与应用展望

[J]. 高电压技术, 2021, 47(5): 1539-1554.

[本文引用: 1]

LIU Yadong, CHEN Si, CONG Zihan, et al.

Key technology and application prospect of digital twin in power equipment industry

[J]. High Voltage Engineering, 2021, 47(5): 1539-1554.

[本文引用: 1]

[24]

龚仁喜, 顾佳宇.

负荷虚拟同步机惯性与阻尼自适应控制策略

[J/OL]. 电测与仪表: 1-7(2021-01-21)[2021-08-08]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210120.1910.014.html.

URL [本文引用: 1]

GONG Renxi, GU Jiayu.

Adaptive control strategy of inertia and damping for load virtual synonous machine

[J/OL]. Electrical Measurement & Instrumentation: 1-7(2021-01-21)[2021-08-08]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210120.1910.014.html.

URL [本文引用: 1]

[25]

武倩羽, 周莹坤, 李晨阳, 等.

新能源同步机并网系统惯性特性的理论和实验研究

[J]. 大电机技术, 2019(6): 41-46.

[本文引用: 1]

WU Qianyu, ZHOU Yingkun, LI Chenyang, et al.

Theoretical and experimental study of inertial acteristics for the synonous motor-generator pair

[J]. Large Electric Machine and Hydraulic Turbine, 2019(6): 41-46.

[本文引用: 1]

[26]

于洋.

基于虚拟同步发电机的微电网控制策略研究

[D]. 郑州:郑州大学, 2020.

[本文引用: 1]

[27]

李嘉媚, 艾芊.

考虑调峰辅助服务的虚拟电厂运营模式

[J]. 电力自动化设备, 2021, 41(6): 1-13.

[本文引用: 1]

LI Jiamei, AI Qian.

Operation mode of virtual power plant considering peak regulation auxiliary service

[J]. Electric Power Automation Equipment, 2021, 41(6): 1-13.

[本文引用: 1]

[28]

赵晋泉, 杨余华, 孙中昊, 等.

考虑虚拟电厂参与的深度调峰市场机制与出清模型

[J]. 全球能源互联网, 2020, 3(5): 469-475.

[本文引用: 1]

ZHAO Jinquan, YANG Yuhua, SUN Zhonghao, et al.

Deep peak regulation market mechanism and clearing model considering participation of virtual power plants

[J]. Journal of Global Energy Interconnection, 2020, 3(5): 469-475.

[本文引用: 1]

[29]

李旭东.

含高比例非常规机组的多元电源联合调峰策略研究

[D]. 北京:华北电力大学, 2019.

[本文引用: 1]

[30]

肖春梅.

电储能提升火电机组调频性能研究

[J]. 热力发电, 2021, 50(6): 98-105.

[本文引用: 1]

XIAO Chunmei.

Research on using electric energy storage to improve frequency regulation performance of thermal power units

[J]. Thermal Power Generation, 2021, 50(6): 98-105.

[本文引用: 1]

[31]

谢惠藩, 王超, 刘湃泓, 等.

南方电网储能联合火电调频技术应用

[J]. 电力系统自动化, 2021, 45(4): 172-179.

[本文引用: 1]

XIE Huifan, WANG Chao, LIU Paihong, et al.

Application of joint frequency regulation technology of energy storage and thermal power in China southern power grid

[J]. Automation of Electric Power System, 2021, 45(4): 172-179.

[本文引用: 1]

[32]

王兴兴, 孙建桥, 陈明.

储能火电联合调频系统设计与研究

[J]. 华电技术, 2020, 42(4): 72-76.

[本文引用: 1]

WANG Xingxing, SUN Jianqiao, CHEN Ming.

Design and research on energy storage and thermal power combined frequency modulation systems

[J]. Huadian Technology, 2020, 42(4): 72-76.

[本文引用: 1]

[33]

王金星, 张少强, 张瀚文, 等.

燃煤电厂调峰调频储能技术的研究进展

[J]. 华电技术, 2020, 42(4): 64-71.

[本文引用: 1]

WANG Jinxing, ZHANG Shaoqiang, ZHANG Hanwen, et al.

Progress on the peak load regulation,frequency regulation and energy storage technologies for coal-fired power plants

[J]. Huadian Technology, 2020, 42(4): 64-71.

[本文引用: 1]

[34]

罗定.

高比例可再生能源与储能协调运行背景下的随机生产模拟

[D]. 北京:华北电力大学, 2019.

[本文引用: 1]

[35]

贾伟青, 陈俊清, 赵耀, 等.

储能电池实现风光储微电网灵活安全运行的仿真研究

[J]. 太阳能, 2020(12): 33-38.

[本文引用: 1]

JIA Weiqing, CHEN Junqing, ZHAO Yao, et al.

Simulation of using storage energy to realize flexible and safe operation of wind-PV-storage energy microgrid

[J]. Solar Energy, 2020(12): 33-38.

[本文引用: 1]

[36]

黄大为, 齐德卿, 于娜, 等.

利用制氢系统消纳风电弃风的制氢容量配置方法

[J]. 太阳能学报, 2017, 38(6): 1517-1525.

[本文引用: 1]

HUANG Dawei, QI Deqing, YU Na, et al.

Capacity allocation method of hydrogen production system consuming abandoned wind power

[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1517-1525.

[本文引用: 1]

[37]

易伟, 徐建源, 吴冠男, 等.

利用风电制氢储能系统提高东北某区域电网弃风消纳能力

[J]. 电力电容器与无功补偿, 2018, 39(4): 190-197.

[本文引用: 1]

YI Wei, XU Jianyuan, WU Guannan, et al.

Improvement of wind abandoned consumption capacity in a region of northeast region China by wind power hydrogen storage energy system

[J]. Power Capacitor & Reactive Power Compensation, 2018, 39(4): 190-197.

[本文引用: 1]

[38]

赵国涛, 钱国明, 丁泉, 等.

基于区块链的可再生能源消纳激励机制研究

[J]. 华电技术, 2021, 43(4): 71-77.

[本文引用: 1]

ZHAO Guotao, QIAN Guoming, DING Quan, et al.

Study on incentive mechanism of renewable energy consumption based on blockchain

[J]. Huadian Technology, 2021, 43(4): 71-77.

[本文引用: 1]

[39]

喻小宝, 郑丹丹.

区块链技术在能源电力领域的应用及展望

[J]. 华电技术, 2020, 42(8): 17-23.

[本文引用: 1]

YU Xiaobao, ZHENG Dandan.

Application and exploration of blockchain technology in energy and electricity

[J]. Huadian Technology, 2020, 42(8): 17-23.

[本文引用: 1]

[40]

王剑晓, 夏清, 李庚银, 等.

基于多市场均衡的综合能源市场机制设计

[J]. 中国电机工程学报, 2021, 41(17): 5789-5803.

[本文引用: 1]

WANG Jianxiao, XIA Qing, LI Gengyin, et al.

Mechanism design for integrated energy markets based on multi-market equilibrium

[J]. Proceedings of the CSEE, 2021, 41(17): 5789-5803.

[本文引用: 1]

[41]

周椿奇, 向月, 张新, 等.

V2G辅助服务调节潜力与经济性分析:以上海地区为例

[J]. 电力自动化设备, 2021, 41(8): 135-141.

[本文引用: 1]

ZHOU Chunqi, XIANG Yue, ZHANG Xin, et al.

Potential regulation ability and economy analysis of auxiliary service by V2G: Taking Shanghai area for an example

[J]. Electric Power Automation Equipment, 2021, 41(8): 135-141.

[本文引用: 1]

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

火电企业查看更多>煤电转型查看更多>火力发电查看更多>