登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 试验仪器
深圳新威CT-4004-20V50A-NFA充放电仪,其电压的工作范围为0~20 V,电流的工作范围为0~50 A,充放电设备进行电池的高电压浮充电试验,在安全性要求的条件下与绝热加速量热仪(ARC)进行联用,研究电池在高电压浮充电后的电池高温热安全性。ARC是由英国赫尔有限公司生产的BTC500,其工作时采用“Heat-Wait-Search”的工作模式来探测电池的温度变化,简称“H-W-S”模式,其工作流程如图1所示。
图1ARC的“H-W-S”模式工作流程图
图2BTC500绝热加速量热仪
ARC设备通过加热丝将电池加热至设置的实验开始温度,进入电池温度标定阶段;电池温度稳定后通过加热丝使电池温度上升一个温度台阶,进入等待程序阶段(让电池与测试腔体达到热平衡);等待阶段结束后,系统自动进入搜索程序,对电池温升速率进行探测,如果搜索到电池温升速率大于系统设置的值,则判定电池出现自产热现象;当样品出现自产热时,进入绝热程序,记录电池样品的温升速率,并保持ARC测试腔体的温度与电池样品温度同步,形成绝热环境,避免电池样品热散失,提供绝热环境,追踪电池样品的放热反应。进入绝热阶段后,电池样品温度的升降只与自身反应有关。
对高电压浮充电后的电池材料进行热稳定性分析,所用同步热分析仪STA8000(美国PerkinElmer)最高温度为1600 ℃,最低温度为15 ℃,温升速率:0.1~100 ℃/min,量热精度:2%。
1.3 试验设计
1.3.1 浮充电试验方法
使用标准充放电方式(0.2 C充电/0.5 C放电)将新电池循环充放电5次后,再将电池充电至满电,设置4.05 V、4.25 V、4.50 V和5.0 V的浮充电压,以25 ℃恒温环境浮充电24 h后静置一段时间,待电池状态稳定,观察软包磷酸铁锂电池外观变化。
1.3.2 浮充后电池高温热稳定性试验方法
本工作采用ARC的“H-W-S”模式研究高电压浮充电后的软包磷酸铁锂电池高温热稳定性。用加热丝对软包电池缠绕3圈,保证电池得到均匀加热,把热电偶布置在电池中间位置。电池样品准备工作如图3所示。将电池放入BTC500测试腔体的三角架上,以保证电池样品位于中央位置,以得到准确的控温效果。同时将热电偶一侧朝下放置,防止电池在鼓胀过程中将热电偶弹开,影响试验结果,随后密封测试腔体。ARC的“H-W-S”程序参数设定如表1所示。其中定义软包磷酸铁锂电池破裂温度为T、电池破裂时间为t1、电压掉落温度为Td、电压掉落时间为t2、热失控触发温度Ts(监测点的温升速率dT/dt≥60 ℃/min,且持续3 s以上)、电池热失控触发时间为t3、热失控最高温度为Tm。
图3软包磷酸铁锂电池样品
1.3.3 浮充后电池材料热稳定性试验方法
对高电压浮充后鼓胀的磷酸铁锂电池进行拆解实验,同时分离电池的正极、负极和隔膜材料,从电池集流体上刮下适量的电极材料,而后放入同步热分析仪STA8000内进行材料的热稳定性分析。试验时对腔体内进行氮气吹扫,仪器的升温范围为25~600 ℃,温升速率为5 ℃/min。
2 结果与数据分析
2.1 浮充电后电池变化
在不同电压下浮充电24 h,浮充充电量如图4,浮充电压从4.05 V升至4.50 V时充入电量并没有明显提升,而当浮充电压为5.0 V时,电池浮充电量明显增大为2.615 Ah。电池并未出现起火爆炸等危险情况,打开ARC测试腔体观察电池外观变化,如图5所示。在电压为4.05 V下浮充电24 h后电池未出现鼓胀,而电压为4.25 V、4.50 V和5.0 V下均出现不同程度的鼓胀现象,这是由于电压的升高使得电解液成分发生氧化分解,产生烷烃、CO2和CO,以及氟化氢(HF)等气体。同时在高电压下充电会造成锂在负极不断沉积,形成锂枝晶,从而与电解液发生反应产气。此时正极的氧化性越来越高,其与电解液发生氧化反应也会产生大量气体。随着浮充电压的升高,电池的鼓胀更加显著,在5.0 V电压下浮充电24 h后电池靠近正极一侧出现破裂,电池完全失效,并且在空气中散发出难闻的气味。
图4不同高电压下浮充24小时的充电量
图5不同高电压浮充电后的电池外观
将5.0 V电压下浮充电24 h的电池从ARC测试腔体中取出,置于防爆箱中静置一段时间,待电池状态稳定后,在保证安全性的前提下,对软包磷酸铁锂电池进行拆解,结果如图6所示。在拆解过程中发现电池隔膜与正极材料紧密粘结在一起,而隔膜与负极材料表现为松散状态,电池内部材料未出现燃烧现象,电池内部各组件在常温5.0 V电压浮充下出现失效,依旧保持良好的热稳定性。表明在5.0 V下浮充电导致电池破裂,但是电池并未出现危险温度,造成内部发生剧烈破坏,这体现了软包磷酸铁锂电池安全性相对较高。拆解后电池正极出现大面积点蚀现象,甚至出现分层,在靠近负极极耳一侧更为明显。负极出现负极材料的溶解,这种现象在靠近负极极耳处率先发生,导致Cu集流体直接裸露;同时在负极表面出现大量白色颗粒状物质,这是高电压下浮充电造成电池负极出现析锂现象,导致负极大面积的锂沉积,而锂在空气中放置一段时间后会发生反应生成Li2O和LiOH等白色粉末。反应方程式如下
图65.0 V电压浮充后电池正极、负极和隔膜图
在隔膜朝向负极一侧出现大面积锂沉积现象,靠近负极极耳一侧尤为显著,同时在清理白色粉末时发现,这些沉积已经刺穿隔膜,形成大量微短路的点,使得电池内部副反应加剧,导致产气更加严重,这也是5.0 V鼓胀最为严重的部分原因。在隔膜朝向正极一侧,由于高电压造成正极材料溶解的部分直接附着在隔膜上,阻塞了隔膜的离子通道,进一步加剧了原有位置的沉积现象。
2.2 浮充后高温热失控研究
实验得到软包磷酸铁锂电池在4.05 V浮充后热失控的温度、电压、时间和温升速率变化,如图7所示。随着温度的升高,当温度为88.57 ℃时,电压曲线出现下降波动,这是电池受热隔膜出现局部收缩现象所导致。由于软包电池内部是大量叠片的层状结构,其内部不一致性会造成电压变化在单体间具有一定的差异性。在ARC中被加热到132.76 ℃时,温升速率达到2.14 ℃/min后出现小幅度下降,这是由于电池在加热过程中出现电解液分解产气、SEI膜的分解释放气体,以及电池内部副反应造成电池鼓包,然后外包装出现破裂,释放出内部气体和热量造成温升速率的减小,此时电池破裂温度T为132.76 ℃。当电压掉落温度Td为144.46 ℃,电压从3.4077 V骤降至0 V,此时隔膜完全熔断。电池正负极内短路大面积发生,释放出大量热量,同时电池内部副反应加剧,电池温升速率迅速增大,电池热失控触发温度Ts为249.86 ℃。随后电池发生热失控,释放出大量白色烟雾,热失控达到的最高温度Tm为484.67 ℃,最大温升速率为298.67 ℃/min。电池在热失控过程中记录了电池破裂时间t1、电压掉落时间t2和电池热失控触发时间t3,分别为24697 s、25263 s和25686 s,电池破裂温度至热失控触发温度历时(t3-t1) 989 s,电压掉落温度至热失控触发温度历时(t3-t2) 423 s,热失控触发后经过39 s后迅速达到热失控最高温度。这两个达到热失控触发的时间,是预警热失控发生和逃离危险的重要时间,可以在电池组内布置压力传感器、气体探测装置,和电池电压变化共同预警电池的热行为,保证储能电池安全使用。
图74.05 V电压浮充后高温热失控温度、温升速率和电压变化图
4.25 V和4.50 V浮充后热失控过程如图8和图9所示。电池破裂温度T分别为131.41 ℃和125.56 ℃;电压掉落温度Td分别为149.82 ℃和152.73 ℃;电池热失控触发温度Ts分别为275.68 ℃和278.65 ℃;电池热失控最高温度Tm分别为520 ℃和516 ℃;电池最大温升速率分别为305.35 ℃/min和315.08 ℃/min;电池破裂温度至热失控触发温度历时(t3-t1)分别为1550 s和2171 s,电压掉落温度至热失控触发温度历时(t3-t2)分别为506 s和713 s;热失控触发后分别经过36 s和28 s后迅速达到热失控最高温度。同时本工作还对未浮充的新电池进行高温热失控试验,结果如图10所示,将不同电压浮充后热失控特征参数汇总于表2。未浮充电池热失控触发温度高达284.36 ℃,而浮充后电池热失控触发温度下降。结合上文分析,高电压浮充后电池内部出现锂沉积,同时造成隔膜的损坏;高电压导致负极活性材料溶解、电解液分解,以及电池内部副反应加剧。这些原因共同导致了电池在高温下的不稳定性,造成电池热安全性能下降。同时对比于浮充后的电池,内部活性物质并无损失,因此在高温热失控下会释放更多的能量,最高温度达到562.08 ℃。
图84.25 V电压浮充后高温热失控温度、温升速率和电压变化图
图94.50 V电压浮充后高温热失控温度、温升速率和电压变化图
图10未浮充新电池高温热失控温度、温升速率和电压变化图
通过汇总表格发现,4.50 V相较于4.05 V浮充电池破裂温度低7.2 ℃,这是由于高电压浮充后其自身鼓包严重,使得电池在加热过程中更容易发生破裂;而4.50 V电池在125.56 ℃破裂后,带走了部分内部已经堆积的热量,释放压力和电解质溢出,这使得内部接触不再紧密,电池隔膜熔断温度也逐渐增加,这使得电池热失控风险降低;4.50 V浮充电池热失控触发温度相较于4.05 V浮充电池的249.86 ℃高28.79 ℃,电池破裂时间到电池热失控触发时间增加了1182 s,但是这并不意味着电池提前破裂后,其单体热稳定性更好;而在4.25 V和4.50 V浮充后电池明显鼓胀,其热失控最高温度相对无鼓胀现象4.05 V浮充电池的484.67 ℃分别提升了35.88 ℃和31.41 ℃,从热失控触发温度到电池热失控最高温度的时间逐渐减小,热失控的最大温升速率随着浮充电压升高而升高,这表明浮充电压升高,电池热失控触发后其破坏程度更加剧烈,将会造成更加严重的破坏,电池提前破裂并不会降低热失控的剧烈程度。
浮充后的软包磷酸铁锂电池热失控过程中均未出现剧烈爆炸,热失控时冒出大量白色烟雾,随后电池逐渐降温。热失控后电池如图11所示,电池热失控后其铝塑膜并未发生溶解现象,依旧包裹着电池内部结构,电池隔膜材料经历高温后完全消失。图中发现电池破裂是由中间位置率先发生,且鼓包程度最为严重,然后向电池极耳和底部蔓延。将电池打开后,正极表现出明显的脆性,变得极易从铝集流体上脱落,隔膜在热失控后从电池内部消失。浮充电压为4.05 V、4.25 V和4.50 V电池热失控后减重比分别为20.11%、20.85%和20.6%,这是由于高温下电池内部隔膜分解、部分电极活性材料与电解液反应、电解液分解燃烧和电极黏结剂分解所造成的质量损失。而5.0 V电池浮充破裂后其减重比为6.14%,这主要是高电压下浮充后内部气体的排出以及电解液溢出和挥发所造成。
图11软包磷酸铁锂电池高温热失控后外观图
2.3 浮充后电池材料热稳定性
本工作使用STA8000同步热分析仪分析5.0 V电压下浮充电24 h后软包磷酸铁锂电池的正极、负极和隔膜的热重曲线及热流曲线,从而研究5.0 V浮充后电池材料的热稳定性。正极材料的热重、热流曲线如图12所示,热重曲线中有一个较为明显的失重阶段,发生在50.02~139.63 ℃,失重比为4.58%,这是由正极材料残留的部分电解液成分受热分解所导致。当温度从266.58 ℃继续升高时,热流曲线观察到正极材料出现吸热现象,但在600 ℃的截止温度时,并未出现明显的吸热峰,此时失重比为17.79%。这体现出磷酸铁锂正极材料较好的热稳定性,在达到600 ℃时,没有出现材料的相变和分解。
图12正极材料热重、热流曲线
负极材料的热重、热流曲线如图13所示,热重曲线上与正极材料接近的49.10 ℃出现失重现象。而在49.10~147.88 ℃之间出现一个明显的吸热峰,峰值为80.15 ℃,吸热量为102.54 J/g,这与负极材料表面形成的固体电解质(SEI)膜受热分解相关。随后负极材料从313.87 ℃开始出现明显的吸热现象,在截止温度并未出现新的吸热峰,此时失重比为7.53%,由此可以看出石墨负极自身良好的热稳定性。
图13负极材料热重、热流曲线
隔膜材料的热重、热流曲线如图14所示,隔膜材料的热重曲线在51.20~109.11 ℃时同样出现明显的质量下降,失重比为3.52%,由此可以确定这部分失重现象是部分残留电解液导致。在120.63~168.32 ℃出现吸热峰,此时质量并未明显下降,这是由隔膜受热达到熔点出现相变造成的,其峰值出现在148.10 ℃,吸热量为141.71 J/g。与上文相结合发现,软包磷酸铁锂电池在5.0 V电压下浮充电导致电池鼓胀破裂,但是内部隔膜形态完整,表明电池内部并未达到148.10 ℃的危险温度。温度在431.26~520.61 ℃出现严重的质量损失,失重比达到83.77%,由于隔膜在这个温度区间受热分解导致质量减小,同时在STA8000上方冒出大量白烟。而热流曲线中,在367.06~520.61 ℃出现明显的吸热峰,其峰值出现在487.73 ℃,吸热量为961.18 J/g。在达到600 ℃后,隔膜材料的质量仅占原有质量的3.97%。说明在600 ℃高温下,正负极材料自身均保持较好的热稳定性,而隔膜材料则会出现相变和分解,同时部分电解液成分也出现分解。
图14隔膜材料热重、热流曲线
3 总结
本工作通过21 Ah软包磷酸铁锂电池在25 ℃下进行不同高电压浮充电实验,分析电池在高电压浮充下的性能,浮充电后再研究单体的高温失控特性以及内部材料的热稳定性,得出以下结论:
(1)在4.05 V下浮充电24 h未出现鼓胀,而在4.25 V、4.50 V和5.0 V下均出现鼓胀。随着电压升高,鼓胀程度加剧,这是由高电压下电解液分解,以及内部副反应共同导致,但均未造成起火爆炸现象。5.0 V电压下浮充电池出现破裂,拆解后发现负极出现大量锂沉积,刺穿隔膜。隔膜与正极紧密相连,正极材料附着在隔膜上。部分负极材料溶解,铜集流体裸露,这种现象在靠近负极极耳一侧更加明显。5.0 V浮充电下电池内部结构完整,未达到120.63 ℃的危险温度,说明软包磷酸铁锂电池作为储能电池有着较好的可靠性。为保证储能电池稳定运行,应避免高电压出现,精确控制浮充电压。
(2)在4.05 V、4.25 V和4.50 V浮充后的高温热失控测试中,电池破裂温度T分别为132.76 ℃、131.41 ℃和125.56 ℃,随着浮充阶段鼓胀的发生,内部产气加剧,电池更容易出现破裂。热失控触发温度Ts分别为249.86 ℃、275.68 ℃和278.65 ℃,鼓胀严重的电池提前破裂释放出部分能量,导致需要更高的温度才会触发热失控,但并不意味着其安全性较好。反而发现,电池热失控最高温度Tm和最大温升速率分别为484.67 ℃、520.55 ℃、516.08 ℃和298.67 ℃/min、305.35 ℃/min、315.08 ℃/min,两者明显增加。这表明鼓胀严重的电池热失控更加剧烈,造成的破坏和危害更加严重。从电池热失控触发温度Ts到热失控最高温度Tm的时间为39 s、36 s和28 s,鼓胀严重的电池一旦触发热失控,其更快释放出能量,形成高温环境。电池热失控后减重比为20%左右,拆解热失控电池发现只有正负极材料未完全溶解消失。
(3)5.0 V浮充后电池的正极、负极和隔膜的热稳定性实验发现,正负极在实验截止温度600 ℃并未发生明显受热分解现象,说明其自身具有良好的热稳定性。而隔膜材料在120.63~168.32 ℃出现相变融化,其吸热峰峰值出现在148.10 ℃,吸热量为141.71 J/g。温度在431.26~520.61 ℃时质量损失严重,失重比达到83.77%,由于隔膜受热分解导致质量减小,在热流曲线中,在367.06~520.61 ℃出现明显吸热峰,其峰值出现在487.73 ℃,吸热量为961.18 J/g。与上文结论相结合可知,热失控发生时主要是电解液分解、电解液与活性材料的副反应和内短路释放出大量能量,而磷酸铁锂电池正负极本身有着较高的热稳定性,大大降低了电池在滥用情况下的危险行为。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,6月11日,中国汽车动力电池产业创新联盟发布2025年5月动力电池月度信息,5月,我国动力电池装车量57.1GWh,环比增长5.5%,同比增长43.1%。其中三元电池装车量10.5GWh,占总装车量18.4%,环比增长13.1%,同比增长1.6%;磷酸铁锂电池装车量46.5GWh,占总装车量81.6%,环比增长3.9%,同
北极星储能网获悉,山东高速鲁东新能源有限公司共享储能电站项目施工总承包招标公告发布,项目位于山东威海,招标人为山东高速鲁东新能源有限公司。占地面积约50亩,220KV并网,与接入点距离约0.8km。储能电池选用195MW磷酸铁锂电池,搭配5MW磷酸铁钠电池。项目接受联合体投标。文件见下:
新能源汽车产业链是否可以“逃出内卷”?整个锂电池产业又将利好几何?6月10日夜至11日晨,比亚迪汽车、奇瑞汽车、吉利汽车、一汽、广汽、东风汽车、长安汽车等多家汽车生产企业陆续发表声明,承诺“支付账期不超过60天”。这对于作为汽车上游供应链的锂电产业无疑将是重大利好。然而,从目前接近半年
北极星储能网获悉,6月9日,中国电建水电十二局凉山盐源牦牛坪光伏发电项目升压站EPC工程项目68MW/136MWh构网型储能采购项目中标候选人公示,湖北省电力装备有限公司以9841.32万元预中标该项目,折合单价0.724元/Wh。根据招标公告,本次采购的范围为额定容量68MW/136MWh储能系统所需设备的供货及指导安
6月9日,山东平度市西北部300MW/600MWh新型储能项目工程总承包招标公告发布。工程造价547000000元,折合单价0.912元/Wh。项目新建一座220kV储能电站,建设规模300MW/600MWh,储能电池采用磷酸铁锂电池,储能站电池系统及功率变换系统均采用户外集装箱布置方案。储能区域共分6个50MW/100MWh区域,共计12
随着新能源发电占比不断提升及电力差价的拉大,储能收益的不确定性正急剧增加。储能应用已不再局限于简单并网与削峰填谷赚取差价,用户对储能系统的全生命周期性能、效率、收益变化、多元能量接入、协同控制以及电力现货交易策略等都方面提出了更高要求。技术赋能定制化策略赋能区域可持续发展继去年8
特朗普当前推出的激进且混乱的贸易政策,已给美国蓬勃发展的电池储能行业带来了诸多问题。行业分析师对依赖进口的电池储能系统制造商未来发展前景持谨慎态度,很多储能项目开发商也推迟了投资。分析师和企业内部人士称,由于进口关税的长期走向尚不明朗,在全球供应链重新达到平衡之前,电池储能行业在
北极星储能网讯:6月7日,立新能源开启了2025年第二批储能设备采购招标,三个项目采购构网型储能系统500MW/2GWh,分别应用于和田地区的和田市、皮山县和民丰县。立新能源已然是新疆地区最重要的新能源储能开发企业之一,其控股股东为新疆能源集团,是新疆国有能源骨干企业。立新能源与华电新能源、新疆
近期,多座储能电站获最新进展,北极星储能网特将2025年6月3日-2025年6月6日期间发布的储能项目动态整理如下:180MW/720MWh!国家电投黄河水电最大储能电站并网投产!5月30日,青海海南州塔拉滩上捷报传来,黄河公司建设的贡玛储能电站正式并网,标志着公司目前最大容量集中式储能电站建成投运。至此,
北极星储能网讯:6月6日,广东湛江徐闻200MW/400MWh独立共享储能电站项目EPC总承包工程采购发布。本次招标为预招标,项目位于广东省湛江市徐闻县,招标人为湛江天转储能科技有限公司,由中国能建广东院持股90%。项目建设8套高压级联全液冷储能单元,电池采用磷酸铁锂电池,以220kV电压等级拟接入当地电
宁德时代重新入股江西升华后,双方的合作关系再进一步。这次宁德时代预定了更多磷酸铁锂产能。6月5日晚间,富临精工发布公告,子公司江西升华与宁德时代签署补充协议,对2024年8月达成的业务合作协议进行修订。协议修订后,宁德时代对江西升华的支持力度进一步增强,承诺的采购期间有所延长,采购规模
北极星储能网讯:2025年1–4月,我国锂离子电池(下称“锂电池”)产业延续增长态势。根据锂电池行业规范公告企业信息和行业协会测算,1–4月全国锂电池总产量超过473GWh,同比增长68%。电池环节,1–4月储能型锂电池产量超过110GWh,新能源汽车用动力型锂电池装车量约184GWh。1–4月全国锂电池出口总
四年过去了,宁德时代与中创新航的专利纠纷仍未平息。就在不久前,宁德时代一起“不正当竞争纠纷”案件落锤,矛头再次指向中创新航。6月10日,湖南省长沙市中级人民法院披露了宁德时代与中创新航等不正当竞争纠纷一案的判决书。公告显示,中创新航科技集团股份有限公司于2022年7月27日在其官方微信公众
6月11-13日,“SNEC第十八届(2025)国际太阳能光伏与智慧能源大会暨展览会”在上海国家会展中心盛大启幕,行业盛会再次成为推动能源变革的核心舞台,格力钛新能源凭借在超高安全能源领域的深厚积累,携系列产品为全球能源转型呈上多元化、高安全的储能应用解决方案。核心电池技术领先,安全与性能双优
6月10日,有媒体报道称,锂电池资源回收公司Li-CycleHoldingsCorp.宣布,已根据《加拿大公司债权人安排法》向安大略省高等法院申请破产保护,保护其自身及其北美子公司。三个月前还在吹捧新融资的“北美电池回收之王”,转眼就躺进资本ICU。资料显示,Li-Cycle是2016年由两名前Hatch公司工程师在加拿大
北极星储能网获悉,6月11日,瑞泰新材在投资者互动平台表示,公司与国内外多家固态锂离子电池相关企业均有合作。目前公司固态电池电解质材料已形成销售,但销售收入占比较小,且固态电池在技术路线、产品路线和商业路线上均有待发展,敬请广大投资者注意投资风险!
文/绿色和平地方气候行动力项目组中美贸易经历了戏剧不断、高潮迭起的一个半月。中国出口美国的储能锂电池关税一度在2025年4月被抬到173%之后,5月12日,中美双方于日内瓦经贸会谈后发布联合声明,美方将对中方全部进口产品加征30%关税。中美关税之战远未结束,仍在重塑中国新型储能产业的竞争格局与发
北极星储能网获悉,6月9日,德方纳米发布公告,控股子公司深圳市德方创域新能源科技有限公司(以下简称“德方创域”)拟以增资扩股方式引入国信资本有限责任公司(以下简称“国信资本”)、成都产投先进制造产业股权投资基金合伙企业(有限合伙)(以下简称“成都产投”)、四川省天府芯云数字经济发展
“有你们供电企业对我们的大力扶持,我们企业定会‘插翅腾飞’啊!”5月27日,河北零点新能源科技有限公司经理对前来做用电检查的国网遵化市供电公司共产党员服务队队员刘强、李智说道。河北零点新能源科技有限公司成立于2015年10月,总部位于河北省唐山市遵化市建明镇境内,占地面积163亩,拥有3.3万
北极星储能网获悉,6月9日,华夏智慧能源(浙江)有限公司发布了山西襄垣42.5MW锂离子电池+超级电容混合储能项目EPC招标公告,合计规模42.5MW/130MWh,项目资金来源为自筹资金15958万元,约合1.228元/Wh。规模:锂离子电池32.5MW/130MWh+超级电容10MW/0.083MWh混合储能站包括锂离子电池预制舱、超级电容
特朗普当前推出的激进且混乱的贸易政策,已给美国蓬勃发展的电池储能行业带来了诸多问题。行业分析师对依赖进口的电池储能系统制造商未来发展前景持谨慎态度,很多储能项目开发商也推迟了投资。分析师和企业内部人士称,由于进口关税的长期走向尚不明朗,在全球供应链重新达到平衡之前,电池储能行业在
北极星储能网讯:6月7日,立新能源开启了2025年第二批储能设备采购招标,三个项目采购构网型储能系统500MW/2GWh,分别应用于和田地区的和田市、皮山县和民丰县。立新能源已然是新疆地区最重要的新能源储能开发企业之一,其控股股东为新疆能源集团,是新疆国有能源骨干企业。立新能源与华电新能源、新疆
13家联合发出构网倡议,捅破能源转型天花板!全球绿色能源的确已经成为不可逆转的时代潮流,而传统燃煤电厂在历史洪流中开始大规模“退役潮”。有数据显示,在2020-2023年间全球退役燃煤机组超100GW,相当于德国全年发电量的1.5倍,而据华泰证券预测,2025到2030年我国每年将有12GW左右的燃煤电厂退役
2025年6月11日,上海国际光伏储能展览会上(SNECPV+2025),三晶电气与亿纬锂能正式签署战略合作协议。双方就储能电芯达成了规模2GWh的项目合作意向,此次合作标志着双方在储能领域的技术创新与产业协同迈入全新阶段,通过整合三晶电气在储能系统集成领域的核心优势与亿纬锂能在储能电池研发的领先技术
每到夏季,美国一些地区都会遭到野火侵袭,这使得美国公用事业公司面临艰难抉择。而美国西部地区的公司通常只有两个选择:要么保持电力线路通电,但面临野火风险;要么强制实施公共安全断电(PSPS),导致服务地区供电中断。而公用事业规模和分布式电池储能系统提供了第三条路径——既能保障公共安全,
在山东某工商业储能电站,业主曾长期面临故障排查难、运维滞后困扰。过去,单次故障运维需要耗费4小时以上进行人工排查。并且由于传统监控只到包级,电芯级隐患往往难以精准消缺。该电站部署阳光电源工商业电芯AI云预警系统后,通过电芯级故障精准定位,成功提升15%电池簇可用容量,并将故障定位时间缩
【中国,上海,2025年6月12日】华为数字能源于上海举办了构网储能安全论坛,来自光储行业的客户,伙伴,保险公司,认证机构等齐聚一堂,围绕构网技术发展趋势及应用、商业实践、储能安全生态建设等话题进行探讨和分享,为构网技术在全球的推广及储能安全的进一步加强提供新思路,推进加速建设新型电力
随着全球脱碳步伐的加速推进,各国正大力扶持以直流电为主导的储能系统开发。而当前直流电气保护的相关技术与标准尚显不足。特别是在电池储能系统领域,尽管需要多个直流电气元件协同工作,但保护盲区的风险依然很大。储能电站因关键设备、系统以及安装质量问题导致电站非计划停运已然成为行业的困扰。
当全球能源转型步入深水区,“安全冗余”与“经济价值”正成为制约产业发展的隐性天花板。本次展会,宏英新能源以“重构边界,安全无忧”为命题,将"绝对安全"铸为所有创新的基石,全球首发ePowerA2浸没式储能产品以及移动储能车系列产品,成为全场焦点,并携手行业专家与数据中心客户共同见证这一里程
北极星储能网获悉,近日,由电工时代承建的青海省海西州宝库储能电站项目,圆满完成全流程施工、系统调试及严格的涉网试验,顺利通过投运验收!这标志着我国西北地区当前规模最大的电网侧独立储能电站正式投入运行,为区域电网稳定性和清洁能源发展注入强劲动能。01规模宏大,技术领先宝库储能电站总装
2025年6月11日,上海SNEC展期间,华为数字能源举办了以“铸就高质量,激发AI潜能,开启全面构网新时代”为主题的华为智能光伏战略与新品发布会,来自能源及光储行业的企业代表、政府机构、产业专家、协会组织、咨询机构和媒体等齐聚一堂,共襄盛举。华为发布了最新的智能光伏战略以及全球首个构网型光
2025年6月11日-13日,SNEC2025上海光伏展在上海国家会展中心盛大开幕,天邦达以“AI赋能储能,智启零碳未来”为主题,携AI储能智能诊断平台及覆盖电力储能、工商业储能、户用储能、站点储能、户外一体化电源等全场景解决方案惊艳亮相,凭借“AI+硬件”双轮驱动的创新实力,成为展会焦点。携手清华大学A
2025年6月11日,第十八届国际太阳能光伏和智慧能源&储能及电池技术与装备(上海)大会暨展览会(SNEC2025)盛大开幕。产业技术的全球领导者施耐德电气携覆盖新型电力系统“源网荷储”全场景,以及贯穿新能源建设“设计-建造-运维”全生命周期的整体解决方案重磅亮相。展会现场,施耐德电气重磅首发全域
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!