北极星

搜索历史清空

  • 水处理
您的位置:电力火电火电动态评论正文

深度|基于碳交易的电—热—气综合能源系统低碳经济调度

2018-08-03 09:51来源:电力系统自动化作者:秦 婷 刘怀东 王锦桥 冯志强 方 伟关键词:综合能源系统碳交易燃气轮机收藏点赞

投稿

我要投稿

摘要:在能源互联网和低碳电力的背景下,综合能源系统成为节能减排的重要载体。基于能源集线器模型搭建了包含电转气和燃气轮机的电 — 热 — 气联供综合能源系统架构;将碳交易机制引入系统的调度模型中,构建了分碳排量区间计算碳交易成本的阶梯型计算模型;综合考虑碳交易成本和外购能源成本,建立了适用于电 — 热 — 气联供系统的低碳经济调度模型。通过对比分析 3 种调度模型的调度结果,验证了所提模型在兼顾系统低碳性和经济性方面的有效性。最后,分析了碳交易价格和耦合元件容量对调度结果的影响。

0 引言

人类社会不断进步,逐渐形成了以化石能源为主的能源消费和利用模式,由此带来的气候变暖问题也成为当前社会经济发展的重大挑战。电力是中国能源消耗的重点行业,其 CO 2 的排放量占全国排放总量的 50% 左右 [1 ] ,因此电力行业具备较大的碳减排潜力,推行低碳电力有利于促进中国低碳经济的发展。

随着各类新能源发电和天然气发电的快速发展,综合能源系统(integratedenergysystem , IES )

被认为是提高清洁能源使用比重、实现碳减排目标的支撑技术 [2 ] 。文献[3 ]考虑天然气网络约束和电网安全约束,建立了针对风电不确定性的鲁棒调度模型;文献[4-6 ]将电转气( powertogas , P2G )技术引入 IES ,构建了以系统最低经济成本为目标函数的调度模型;文献[7 ]考虑电、热负荷的需求侧响应建立了两步调度模型,并探讨了风电渗透率对系统运行的影响。现有 IES 调度模型仅考虑了系统整体的经济成本,忽略了碳排放带来的附加环境成本。

为了减少电力系统碳排放,碳交易被认为是可兼顾电力经济性和低碳环保性的有效手段 [8 ] 。文献[9-11 ]基于碳交易机制,分别建立了含不同新能源的电力系统优化调度模型。在 IES 方面,文献[ 12 ]计算了 IES 在碳交易机制下的碳交易成本和能源成本,并分析了碳交易价格和天然气价格对系统运行的影响,对 IES 的碳交易成本分析具有指导意义。但其并未对碳交易成本计算模型进行改进,同时所构建的 IES 较为简单,仅包含天然气气源、火电机组、燃气轮机和电气负荷。

对于一个电 — 热 — 气联供的 IES 形态,引入风电可增强系统能量来源的清洁性;引入 P2G 和燃气轮机形成闭环耦合系统,可以增强电、气网络的耦合程度,同时 P2G 有利于提高 IES 对新能源的消纳能力;引入储电、储热和储气设备,有利于形成多元消纳技术提高新能源利用率 [13 ] 。

本文针对一个电 — 热 — 气联供的 IES ,建立了基于碳交易的低碳经济调度模型。首先,立足于能源集线器(energyhub , EH )模型[ 14 ] 构建了电 — 热 — 气联供的 IES 架构;然后,搭建了适用于该 IES 的阶梯型碳交易成本计算模型;接着,以碳交易成本与能源成本之和最小为目标函数,考虑系统网络约束和系统内各元件的运行约束,构建了 IES 低碳经济调度模型。通过算例比较了阶梯型低碳经济调度、统一型低碳经济调度和传统经济调度模型的调度结果,分析了三种模型下的两种成本和外购能源数据,验证了本文所提模型的合理性和有效性。最后,研究了碳交易价格和耦合元件容量对系统调度结果的影响。

1 电 — 热 — 气联供的 IESEH

最早由苏黎世联邦理工学院的 Geidl 和Andersson 提出,它是一种可以满足多种能量需求的能量转换单元 [15 ] 。基于EH 模型,可以清晰得出IES 的架构及其中的能量流动。本文构建的 EH 模型如图 1 所示,能量供给侧有风电、电力网络和天然气网络;能量转换组件有 P2G 设备、燃气轮机和燃气锅炉;负荷侧配备有储电、储热、储气装置。其中,绿线、红线和蓝线分别对应电力、热力和燃气能量流动情况。

2 IES 碳交易成本计算模型

2. 1 碳交易机制及其分配原则

碳交易是通过建立合法的碳排放权并允许对其进行买卖,从而实现碳排放量控制的交易机制 [16 ] 。在碳交易机制下,碳排放量成为可以进行自由交易的商品。政府或者监管部门以控制碳排放总量为目标,首先为各个碳排放源分配碳排放份额。各碳排放源根据分配份额制定和调节生产计划,若在生产过程中产生的碳排放量高于分配份额,则需从碳交易市场内进行购买;若碳排放量低于分配份额,则可将多出的碳排放额在碳交易市场上出售,根据当日的碳交易价格(即单位碳排放量价格)获得相应收益。碳交易机制利用市场手段对碳排放量进行控制,可极大地激发企业节能减排的积极性。

对于电力行业,一般采用以无偿为主的方式进行初始碳排放额的分配 [9-12 ] 。初始无偿的碳排放份额与系统发电量相关联,对于超出或者不足的部分可进行碳交易。

2. 2 IES 碳交易成本计算模型

本文认为 IES 从电力网络购得的电力均为火电机组发电。因此对于电 — 热 — 气联供的 IES ,存在三个碳排放源:外购的电力、燃气轮机和燃气锅炉。IES 的无偿碳排放额由外购电力和燃气轮机发出的电力确定:

式中:

E L 为 IES 的无偿碳排放额; T 为一日时段总数,为 24h ; Δ t 为单位时段时长,为 1h ;δ 为单位电量排放份额,本文取区域电量边际排放因子和容量边际因子的加权平均值 0.648[ 9 , 16 ] ;P e , t 为单位时段t 内的外购电力功率; Pgt, t 为单位时段 t 内输入燃气轮机的天然气功率;η gte 为燃气轮机的气转电效率。

文献[17-18 ]给出了电 — 气互联系统中供电和供热的碳排放计算方法,IES 实际碳排放量由下式确定:

式中:

E P 为 IES 实际的碳排放量; a 1 , b 1 , c 1 为火电碳排放计算系数,a 2 , b 2 , c 2 为天然气供能碳排放系数;

P gtr , t 为单位时段 t 内燃气轮机和燃气锅炉输出功率之和;η gth 为燃气轮机气转热效率;Pgb, t 为单位时段 t 内燃气锅炉的输入功率;ηgb为燃气锅炉的能量转换效率。

为了进一步控制碳排放总量,本文构建了阶梯型碳交易成本计算模型。以分配到的无偿碳排放额为基准,规定若干排放量区间,排放量越大的区间对应的碳交易价格越高。阶梯型碳交易成本计算公式如下:

式中:

F C 为 IES 碳交易成本; λ 为市场上的碳交易价格;d 为碳排放量区间长度; σ 为每个阶梯碳交易价格的增长幅度,每上升一个阶梯,碳交易价格增加σλ 。当 E P < E L 时, F C 将为负,表示系统实际碳排放量低于无偿碳排放额,可以以初始碳交易价格对多余份额获取碳交易收益。

原标题:基于碳交易的电—热—气综合能源系统低碳经济调度
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

综合能源系统查看更多>碳交易查看更多>燃气轮机查看更多>