登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
中科院福建物构所的王要兵教授和徐刚教授合作,首次提出了一种制作导电金属有机框架纳米线阵列的方法,并将其用作固态超级电容器的电极材料。此方法将金属有机框架材料可控生长在碳纤维纸上形成晶体纳米线阵列,进而直接用作超级电容器的复合电极。
超级电容器由于具有高功率密度,能够快速充放电,循环性能好,因而成为最有前景的下一代能量储存装置之一。相比于液态电解质超级电容器,固态超级电容器更小、更轻,并且更加容易操作,性能更可靠,安全性也更佳,可以在大温度范围内使用。
它广泛应用在可穿戴设备及微型电子器件上。为此,人们开发了很多电容性材料,例如过渡金属氧化物、碳同素异形体和导电聚合物等。其中,作为一种新兴电极材料,由金属位点和有机连接基团构成的金属有机框架材料越来越受到关注。
由于具有相当大的比表面积(>7000m2/g),它可以大量地从电解质溶液中吸收离子进而获得很大的双电层电容。另外,这种材料具有很好的结构可调性,方便合理控制孔的大小和排列。然而,传统金属有机框架材料的弱导电性限制了其在超级电容器电极材料方面的应用。
最近,中科院福建物构所的王要兵教授和徐刚教授合作,首次提出了一种制作导电金属有机框架纳米线阵列的方法,并将其用作固态超级电容器的电极材料。此方法将金属有机框架材料可控生长在碳纤维纸上形成晶体纳米线阵列,进而直接用作超级电容器的复合电极。
这种材料(Cu-CAT)由于具有纳米结构、高孔隙率和优良的导电性能,因而拥有超级电容器金属有机框架材料领域迄今为止所报道的最大面积电容和最佳倍率性能。本项工作以"ConductiveMetal–OrganicFrameworkNanowireArrayElectrodesforHigh-PerformanceSolid-StateSupercapacitors"为题于5月26日发表在期刊Adv.Funct.Mater上。
1.Cu-CAT的晶体结构及显微图像
(a)沿c轴看到的Cu-CAT晶体结构。
(b)碳纤维纸的SEM图像和光学照片(见小图)。
(c-d)生长在碳纤维纸上的Cu-CAT纳米线阵列的SEM图像和光学照片(见c中小图)。
沿c轴方向,Cu-CAT有开口约为1.8nm的一维通道。当碳纤维纸被Cu-CAT纳米线阵列覆盖后,颜色由灰色变成深绿色。获得的纳米线呈均一的六棱柱形,顶部是六边形晶面。
2.Cu-CAT纳米线的TEM及比表面积表征
(a-b)Cu-CAT纳米线的TEM图像(小图是SAED图案)。
(c)Cu-CAT的PXRD曲线。
(d)77K下Cu-CAT的氮气吸附等温线曲线。
TEM表征结果表明纳米线是单晶体,纳米线沿着[001]方向生长。氮气和水蒸气吸附结果说明Cu-CAT具有微孔结构,比表面积是540m2g-1。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
盖房子用的水泥能用来发电,还能当成“电池”储能。东南大学9日发布最新科研成果,该校科研人员研发出仿生自发电-储能混凝土,将高能耗的水泥变为“绿色能量体”,为构建新型能源体系、实现“双碳”目标提供技术助力。统计数据显示,我国建筑全过程能耗占到全国能源消费总量的45%,碳排放量占全国排放
北极星储能网讯:4月28日,国家发改委发布《绿色低碳先进技术示范项目清单(第二批)》,涉及储能的示范项目有12项,总规模超2.455GW/9.14GWh。其中包括,500兆瓦/2000兆瓦时构网型混合储能示范项目;295兆瓦/590兆瓦时构网型储能电站示范项目;350兆瓦/1400兆瓦时石灰岩地层储气库压缩空气储能电站示
北极星储能网获悉,4月22日,安徽省先进光伏和新型储能产业集群建设领导小组办公室发布《关于征集先进光伏和新型储能领域专家库的通知》。其中明确要求,应具有高级以上专业技术职称,或具有丰富的相关工作经历和管理经验,专业造诣较深,熟知其所在专业或者行业的国内外情况及相关法律、法规、政策和
北极星储能网获悉,4月1日,深圳新宙邦科技股份有限公司披露投资者关系活动记录表,回答投资者提问。对于公司电解液市场后续规划,新宙邦回答:公司核心业务之一为电池化学品,主要产品包括:锂离子电池化学品(如电解液、添加剂、新型锂盐、碳酸酯溶剂)、超级电容器化学品、一次锂电池化学品、钠离子
3月5日,2025年中国储能技术创新应用研讨会在浙江杭州圆满落幕!继4日的广泛讨论之后,行业几位专家结合当前的储能应用发展趋势,从储能人才培养、混合储能技术、储能出海等热点话题分别做了解读。与此同时,业内人员也一同走访了位于浙江杭州的两大电网侧储能项目,通过实地调研探究技术创新对储能项
加利福尼亚大学洛杉矶分校的研究人员最近发表文章,分享了他们使用一种特定类型的塑料实现更高效能源存储的突破性工作,这种新材料可能为全球可持续能源转型提供解决方案。我们在日常生活中到处使用塑料。塑料有助于保持食物新鲜和医疗设备的无菌状态,并且为电子产品提供绝缘。事实证明,塑料还可以做
2月20日晚间,诺德股份(600110)公告,近日,公司全资孙公司深圳百嘉达新能源材料有限公司(简称“百嘉达”)与中创新航(03931)签订了《2025年保供框架协议》,基于双方长期稳定的战略合作,为保证百嘉达铜箔产品的供应稳定,百嘉达承诺2025年向中创新航供应铜箔产品4.5万吨,实际供货量需以正式销
新型储能迎来重大利好!不仅12大技术上榜,还将培育3#x2014;5家生态主导型企业,到2027年,实现高端化、智能化、绿色化发展。对此,有相关机构认为,2025年中国储能装机有望在2024年翻倍增长的基础上,保持较高增速,与此同时,海外市场渗透率有望提升。那么,真锂新媒就带您具体盘点一下,这新型储能1
2月17日,工业和信息化部等八部门关于印发《新型储能制造业高质量发展行动方案》的通知,通知指出,推动“光伏+储能”系统在城市照明、交通信号、农业农村、公共广播、“智慧车棚”等公共基础设施融合应用,鼓励构建微型离网储能系统。原文如下:工业和信息化部等八部门关于印发《新型储能制造业高质量
工业和信息化部等八部门印发《新型储能制造业高质量发展行动方案》。到2027年,我国新型储能制造业全链条国际竞争优势凸显,优势企业梯队进一步壮大,产业创新力和综合竞争力显著提升,实现高端化、智能化、绿色化发展。同时文件还明确,新型储能制造业规模和下游需求基本匹配,培育生态主导型企业3—5
近日,山西省多地举行2025年第一次“三个一批”活动。太原:2月6日,低碳绿能产业、蓝石光智人工智能算力服务器智能制造、等12个项目现场签约;年产4.8亿克拉半导体基体工具材料项目开工,同时,与会领导考察观摩了“投产一批”代表项目中国长城电源业务落地项目。大同:大同市共推进项目42个,总投资5
固态钠电池兼具资源丰富、安全性高、比能量高等优势,被认为是最有应用前景的新型储能技术之一。然而,固态钠电池中在应用中面临诸多挑战,Na金属负极与固态电解质之间的固-固接触导致高界面电阻和Na枝晶的形成,降低了Na的利用率,并损害了电池的循环稳定性;商业化制造的钠箔的厚度一般在50m以上,较
北极星储能网获悉,5月8日,吉利汽车与深势科技签约开启战略合作,双方将共建“新能源+AI”联合实验室。据悉,该实验室聚焦云端电池数字孪生、AI代理模型及电池新材料智能研发三大领域。双方将分别依托吉利自研大模型矩阵和深势科技“AIforScience”技术矩阵,开创动力电池“靶向药级”研发新范式。其
作者:王钦1张艳岗1梁君飞1王华2单位:1.中北大学能源与动力工程学院;2.北京航空航天大学化学学院引用:王钦,张艳岗,梁君飞,等.硅基固态电池的界面失效挑战与应对策略[J].储能科学与技术,2025,14(2):570-582.WANGQin,ZHANGYangang,LIANGJunfei,etal.Challengesandstrategiesforinterfacefailuresinsil
作者:王泓张开悦单位:沈阳理工大学材料科学与工程学院DOI:10.19799/j.cnki.2095-4239.2024.0893引用:王泓,张开悦.全钒液流电池碳毡电极的热处理活化研究[J].储能科学与技术,2025,14(2):488-496.本文亮点:1.设计了用于碳毡电极活化的低温短时热处理策略,实现了多孔电极结构强度与催化活性的最优匹
3月26日,天合元氢亮相第四届中国国际氢能及燃料电池产业展览会,重磅推出自主研发的“天擎系列第二代碱性电解水制氢装备”。作为全球产能最大的电解水制氢设备制造商之一,天合元氢以“更安全、更稳定、更高效、更经济”为核心的新一代产品,突破规模化制氢场景中的技术瓶颈,为绿氢规模化发展提供核
北极星储能网获悉,3月11日,全球产能最大的短流程钒电解液制备项目在内江投运,这是四川发展(控股)公司贯彻落实国家“双碳”战略、加速布局新型储能战略性新兴产业的第一个重大产业化项目,标志着四川省储能产业建圈强链迈出新步伐。此次投产的年产60000m短流程钒电解液制备项目,采用自主研发的新
今年政府工作报告指出,协同推进降碳减污扩绿增长,加快经济社会发展全面绿色转型。立足“十四五”规划收官之年,高质量发展底色更绿、成色更足。今年2月,云南省委、省政府召开2025年一季度重大产业项目调度推进会,提出“走生态绿色高质量发展道路”。南方电网公司积极探索以数字化绿色化协同促进新
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
作者:刘通1,3杨瑰婷1毕辉4梅悦旎1刘硕1宫勇吉3罗文雷2单位:1.空间电源全国重点实验室,上海空间电源研究所;2.军事科学院国防科技创新研究院;3.北京航空航天大学材料科学与工程学院;4.中国科学院上海硅酸盐研究所引用:刘通,杨瑰婷,毕辉,等.高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[
作者:梅悦旎,屈雯洁,程广玉,向永贵,陆海燕,邵晓丹,张益明,王可单位:空间电源全国重点实验室,上海空间电源研究所引用本文:梅悦旎,屈雯洁,程广玉,等.锂离子电池正极补锂技术研究进展[J].储能科学与技术,2025,14(1):77-89.DOI:10.19799/j.cnki.2095-4239.2024.0767本文亮点:1、本文对当前主流的正极
作者:江训昌1,2喻科霖3杨大祥1,2,4廖敏会5周洋5单位:1.重庆交通大学绿色航空技术研究院;2.重庆交通大学;3.重庆市育才中学;4.绿色航空能源动力重庆市重点实验室;5.重庆长安新能源汽车有限公司引用:江训昌,喻科霖,杨大祥,等.原位聚合制备PDOL基固态电解质及其在锂金属电池中的应用[J].储能科学与
业内人士比喻,找到配比合适的电解液有点像抓中药,犹如不同体质、病症服用不同药方,需要根据锂电池的正负极材料种类、电池形状、电池性能最终决定电解液的配方。【业绩】电解液溶剂产品量价齐升石大胜华上半年净利1.32亿元8月5日晚间,石大胜华披露中报。今年上半年,公司实现营业收入27.38亿元,同
合肥工业大学科研团队制备出一种高强度、自支撑、超薄透明的石墨烯薄膜,并将其组装为全固态柔性超级电容器,为下一代柔性电子器件的研发开辟了新路径。该校教授怀萍科研团队与中国科技大学、南京大学等合作,通过单分子原子力显微镜测量手段,在11种不同有机分子中发现了与氧化石墨烯之间的作用力最强
通过电化学方法在泡沫镍基底上电沉积MnO2,然后在其表面原位电聚合导电高分子PEDOT-PSS,形成复合结构材料,并研究不同聚合时间包覆的导电高分子层对复合电极电化学性能的影响。采用拉曼光谱、扫描电镜和透射电子显微镜观察制备的复合材料电极的表面形貌与结构。通过电化学测试结果表明,电聚合10s得到
随着柔性、智能、便携、及可穿戴电子器件的出现和发展,传统的刚性块状电池显然难以满足需求,因此,基于凝胶电解质的柔性全固态能量储存器件引起了广泛关注。超级电容器具有功率密度大、充放电速度快、环境友好等优点,并能通过简单的方法组装成柔性全固态器件,近年来得到了迅速发展。在柔性全固态超
3月16日从中科院获悉,近日,中国科学院合肥物质科学研究院等离子体物理研究所博士王奇和南京师范大学教授韩敏课题组合作,在高性能杂原子掺杂石墨烯基纳米结构的规模化制备及其在柔性全固态超级电容器应用方面取得新进展。部分研究成果已在线发表于国际期刊Small上,并被选为该杂志的InsideFrontCover
近年来,柔性、微型能源储存装置由于其柔韧和轻便等特点,在可穿戴电子设备、智能皮肤和便携式智能手机等方面展现出巨大的应用前景。其中,柔性的全固态超级电容器具有结构简单、制作方便、功率密度高、充放电快速、以及循环寿命长等优点,成为了能源储存器件的研究重点。目前,全固态超级电容器主要包
摘要:随着绿色储能器件的快速发展,超级电容器作为兼具高比能量与高比功率的优点,在储能领域具有重要发展潜力的新型储能器件,本综述从超级电容器的电极材料出发,详细概括了超级电容器电极材料的发展,包括双电层电容材料、赝电容材料以及双电层/赝电容复合材料;在此基础上,基于固态电解质,深入讨
近日,中国科学技术大学化学与材料科学学院教授马明明课题组设计了一种由导电聚苯胺和聚乙烯醇通过动态化学键交联形成的高强度超分子水凝胶,并将其作为电极材料制备了具有高比容量和稳定性的柔性全固态超级电容器。该成果在线发表在Angew.Chem.Int.Ed.(DOI:10.1002/anie.201603417)上。论文的第一作者
近日,中国科学技术大学谢毅团队吴长征课题组与刘光明课题组合作,将具有独特离子通道的新型两性凝胶电解质用于全固态超级电容器,获得了目前石墨烯基全固态超级电容器的最优性能。该两性凝胶电解质有望成为全固态超级电容器领域中的新型高效电解质。该研究成果5月26日在线发表在NatureCommunications,
日前,天津工业大学康建立教授与天津大学赵乃勤教授合作在基于石墨烯膜的超级电池研究取得重大突破。他们采用了一种两步合成新方法,巧妙地避免了纳米多孔金属模板催化剂在高温下快速长大造成多孔石墨烯孔径变大的难题,首次获得了膜孔直径在1-150nm的连续多级纳米孔石墨烯膜。将此石墨烯膜组装成全固
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!