登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。本文从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对未来发展方向进行了展望。
随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350W˙h/kg。
为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。
硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3572mA˙h/g,远高于商业化石墨理论比容量(372mA˙h/g),在地壳元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。
然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。
碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。
在Si/C复合体系中,Si颗粒作为活性物质,提供储锂容量;C既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料的导电性,还能避免Si颗粒在充放电循环中发生团聚。因此Si/C复合材料综合了二者的优点,表现出高比容量和较长循环寿命,有望代替石墨成为新一代锂离子电池负极材料。
近年来,硅碳负极材料相关技术发展迅速,迄今已有少量产品实现实用化,日本日立集团Maxell公司已开发出一种以“SiO-C”材料为负极的新式锂电池,并成功地应用到诸如智能手机等商业化产品中。然而,硅碳负极锂离子电池距离真正大规模商业化应用仍有大量科学问题亟需解决。
本文从材料选择、结构设计以及电极优化等方面综述了硅/碳复合材料近年来的研究进展,并对硅碳材料的发展趋势作了初步展望,以期为进一步研究高性能锂离子电池负极用硅碳复合材料提供借鉴。
硅碳复合材料结构设计
从硅碳复合材料的结构出发,可将目前研究的硅碳复合材料分为包覆结构和嵌入结构。
1.1包覆结构
包覆结构是在活性物质硅表面包覆碳层,缓解硅的体积效应,增强其导电性。根据包覆结构和硅颗粒形貌,包覆结构可分为核壳型、蛋黄-壳型以及多孔型。
1.1.1核壳型
核壳型硅/碳复合材料是以硅颗粒为核,在核外表面均匀包覆一层碳层。碳层的存在不仅有利于增加硅的电导率,缓冲硅在脱嵌锂过程中的部分体积效应,还可以最大限度降低硅表面与电解液的直接接触,进而缓解电解液分解,使整个电极的循环性能得到提高。
Zhang等采用乳液聚合法在硅纳米颗粒表面包覆聚丙烯腈(PAN),经800℃热处理得到硅碳核壳结构复合材料(Si@C)。无定形碳层抑制了充放电过程中硅颗粒的团聚,Si@C在循环20次后容量维持在初始容量的50%左右。相比之下,硅纳米颗粒在循环20次后容量衰减严重。
Hwa等以聚乙烯醇(PVA)为碳源,采用惰性气氛下高温热解法对硅纳米颗粒进行碳包覆,得到碳壳层厚度为5~10nm厚的硅碳复合材料。采用硅纳米颗粒可以降低硅的绝对体积效应,减弱材料内部应力,碳包覆则进一步缓冲了硅内核的膨胀,该复合材料在100mA/g电流下循环50次后比容量仍可达1800mA˙h/g,展现出优异的循环稳定性,而纯纳米Si和碳包覆微米硅(4μm)容量则衰减至不足200mA˙h/g。
Xu等通过高温热解聚偏氟乙烯(PVDF)得到核壳型硅碳复合材料,其碳层厚度为20~30nm;该硅碳复合材料电极在0.02~1.5V电压范围内,50mA/g电流条件下的首次可逆比容量为1328.8mA˙h/g,循环30次后容量保持在1290mA˙h/g,容量保持率达97%。核壳型硅/碳复合材料中,不同热解碳源材料的选择对复合体系中硅-碳嵌锂基质界面的影响也不尽相同。
Liu等对比分析了以聚环氧乙烯(PEO)、聚氯乙烯(PVC)、聚乙烯(PE)、氯化聚乙烯(CPE)和PVDF为热解碳源的硅基核壳型负极材料,发现:由于含氟材料对硅的刻蚀作用,部分F可嵌入到Si—Si键中,有效地强化了热解碳与硅内核的界面兼容性,相应的Si-PVDF基活性材料也展现出更为优异的循环稳定。
因此,当碳源有机前驱物中含有F或Cl元素时,有利于获得更稳定的硅碳界面,使材料的电化学性能更为优异。
总之,通过对硅材料进行碳包覆,构建核壳结构,有助于改善材料的循环稳定性。然而,当硅碳核壳结构中的热解碳无空隙地包覆在硅颗粒表面时,由于硅核锂化过程的体积效应太大,会导致整个核壳颗粒膨胀,甚至导致表面碳层发生破裂,复合材料结构坍塌,循环稳定性迅速下降。为解决这一问题,研究者从强化壳层机械性能方面入手,设计出了双壳层结构。
Tao等通过在硅纳米颗粒表面包覆SiO2和热解碳,制备出具有双壳层结构的复合材料(Si@SiO2@C),见图1。与单壳层Si@C相比,Si@SiO2@C具有更高的容量保持率,在0.01~5V电压范围内循环100次后仍具有785mA˙h/g的可逆容量。
研究表明,中间层SiO2作为缓冲相,可进一步减小循环过程产生的膨胀应力;同时,SiO2层还可与扩散的Li+发生不可逆反应,生成Si和Li4SiO4合金,进一步保证了材料的可逆容量。
1.1.2蛋黄-壳型
蛋黄-壳结构是在核壳结构基础上,通过一定技术手段,在内核与外壳间引入空隙部分,进而形成的一种新型纳米多相复合材料。蛋黄-壳型硅/碳复合材料呈现一种特殊的Si@void@C壳层的构型,不仅具有普通核壳结构的优势,而且它的空腔对于硅体积膨胀有容纳作用,可实现硅核更加自由的膨胀收缩,从而保证材料在充放电过程中整体结构的稳定性,有利于产生稳定的固态电解质(SEI)膜。
Zhou等采用溶胶-凝胶法在硅纳米颗粒表面包覆一层SiO2壳层,以蔗糖为碳源进行热解碳包覆,将SiO2用HF刻蚀后得到蛋黄-壳结构复合材料(Si@void@C),其中活性物质硅的质量分数为28.54%。相比于硅纳米颗粒和空心碳,Si@void@C具有更好的循环稳定性,首次比容量为813.9mA˙h/g,循环40次后容量保持在500mA˙h/g。
Tao等采用相似的方法也制备出稳定的Si@void@C复合材料,循环100次后的比容量为780mA˙h/g。碳负载量的优化发现,复合材料中碳负载量为63%时的比容量(780mA˙h/g)高于碳负载量为72%时的比容量(690mA˙h/g)。这表明要实现Si@void@C复合材料的最大容量,还需要对蛋黄-壳结构进行深入的优化设计。
Liu等以聚多巴胺为碳源合成出蛋黄-壳复合材料(Si@void@C)。在该结构中,硅内核和薄碳层之间预留了充足的空间,使硅在锂化膨胀时不破坏碳壳层,从而使复合材料表面能形成稳定的SEI膜。
这种Si@void@C在0.1C电流密度下,可逆容量高达2800mA˙h/g,循环1000次后有74%的容量保持率以及99.84%的Coulomb效率。
近来,研究者将多壳层概念引入到硅碳蛋黄-壳结构设计中,以增强碳层的机械性能,提高材料抵抗硅体积膨胀应力的能力。
Sun等通过囊泡模板法制备出Si@void@SiO2材料,并在多孔SiO2壳层内外侧涂覆多糖,于惰性气氛下高温热解得到Si@void@C@SiO2@C,经HF刻蚀除去SiO2后,得到具有双壳层结构(Si@void@C@void@C)的蛋黄-壳型复合材料(Si@DC),见图2。
双碳层的引入使材料具有更为优异的导电性能。在50mA/g电流密度下,Si@DC在循环80次后的放电比容量保持943.8mA˙h/g,而硅/单壳层(Si@SC)和纯硅颗粒在循环80次后容量则分别降低至719.8和115.3mA˙h/g。
Yang等采用Stöber法和热解法在硅纳米颗粒表依次包覆SiO2层和碳层,经HF选择性刻蚀,得到双壳层结构复合材料(Si@void@SiO2@void@C)。
该材料展现出优异的循环稳定性,在460mA/g电流密度下循环430次后,容量保持在956mA˙h/g,容量保持率高达83%,而Si@C核壳材料在相同测试条件下,前10次循环容量衰减明显,循环430次后容量不足200mA˙h/g。
在此复合结构中,碳层能够提高导电性,SiO2层增加了材料稳定性,空腔为硅内核的膨胀提供了缓冲空间。同时,SiO2和碳双壳层阻隔了电解液和硅纳米颗粒,防止硅纳米颗粒与电解质发生不可逆反应,起到了了双层保障作用。
1.1.3多孔型
多孔硅常用模板法来制备,硅内部空隙可以为锂硅合金化过程中的体积膨胀预留缓冲空间,缓解材料内部机械应力。由多孔硅形成的硅碳复合材料,在循环过程中具有更加稳定的结构。
研究表明,在多孔型硅/碳复合材料中,均匀分布在硅颗粒周围的孔道结构能够提供快速的离子传输通道,且较大的比表面积增加了材料反应活性,从而展现出优良的倍率性能,在电池快充性能方面具有显著优势。
Li等通过可控还原二氧化硅气凝胶的方法,合成出3D连通的多孔硅碳复合材料,该材料在200mA/g电流密度下循环200次时容量保持在1552mA˙h/g,且在2000mA/g大电流充放电下循环50次后仍保持1057mA˙h/g的比容量。
Bang等通过电偶置换反应,将Ag颗粒沉积于硅粉(粒径10μm)表面,经刻蚀除去Ag后得到具有3D孔结构的块状硅,再通过乙炔热解进行碳包覆,制备出多孔型硅碳复合材料,在0.1C倍率下具有2390mA˙h/g的初始容量以及94.4%的首次Coulomb效率;在5C倍率时的容量仍可达到0.1C倍率时容量的92%,展现出优异的倍率性能。此外,该电极循环50次后厚度从18μm变为25μm,体积膨胀仅为39%;同时,该材料的体积比容量接近2830mA˙h/cm3,是商业化石墨电极的5倍(600mA˙h/cm3)。
Yi等将微米级SiO2粉末在950℃高温处理5h,得Si/SiO2混合物,HF酸刻蚀除去SiO2后,得到由粒径为10nm的硅一次粒子堆积组成的多孔硅。然后,以乙炔为碳源,在620℃热解20min,对多孔硅进行碳包覆,制得多孔硅碳复合材料。该材料在1A/g电流密度下循环200次后容量保持在1459mA˙h/g,远高于纯硅;在12.8A/g高电流密度下的比容量仍可达到700mA˙h/g,表现出优异的倍率性能。此外,该材料振实密度大(0.78g/cm3),体积比容量高,在400mA/g电流密度下充放电循环50次,容量保持在1326mA˙h/cm3。
进一步研究发现,通过调节反应温度对硅一次粒子粒径进行优化,其中一次粒子为15nm时多孔硅碳复合材料性能最优,在400mA/g电流密度下循环100次后容量可达1800mA˙h/cm3,远高于一次粒子粒径为30nm和80nm的复合材料。这主要是由于硅一次粒子粒径越小,脱嵌锂时体积变化越小,因而能够形成更为稳定的SEI膜。
另外,对碳化温度和时间进一步优化发现,碳化温度800℃、碳负载质量分数20%时的多孔硅/碳复合材料性能最佳,在1.2A/g电流密度下循环600次后的容量保持在1200mA˙h/g,几乎无容量损失,且Coulomb效率高达99.5%。
该多孔硅碳复合材料合成工艺成本低,易于规模化生产。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,近日,高性能锂电硅碳负极材料研发供应商杭州星科源新材料科技有限公司(以下简称“星科源”)完成数千万元天使+轮融资。本轮融资投资方为元禾原点。本轮融资主要用于开发新一代产品,以及在技术迭代基础上,突破规模化量产。据了解,星科源成立于2022年1月,聚焦于锂电用硅碳负极的
2025年,锂电池行业发生关键性转折的一年,多年后回望,也许你会发现2025年将成为诸多技术产品的爆发元年。其中,固态电池、硅碳负极、高压密磷酸铁锂、9系超高镍、磷酸锰铁锂、无极耳大圆柱、兆瓦超充、盐湖提锂、新型钠电池,以及更加安全的锂电池系统,以上10大技术和对应产品将推动新能源产业的快
中国动力电池行业的扩张步伐正在持续,头部企业中创新航与国轩高科近期的投资动作再次印证了这一趋势。与此同时,一个显著的并行现象是,围绕大圆柱电池、固态电池及其相关新材料的产能布局正变得日益密集,呈现出“拥挤”的态势。中创新航公布了大规模的扩产计划。其成都项目二期已于3月底动工,该项
北极星储能网获悉,4月28日,鹿山新材在投资者互动平台上表示,公司硅碳负极功能粘接材料(PAA)可用于液态/半固态/固态锂电池中硅基负极极片的粘接。已通过3C电子客户的系统性验证,能够有效提升硅碳负极的循环稳定性与电池续航,已批量供货。在动力电池应用方面,已完成汽车领域知名企业小试验证,目
北极星储能网获悉,4月26日,南都电源在投资者关系活动中表示,公司2024年营业业绩较上年度变动较大,主要原因有回收板块废旧电池价格持续处于高位,产品毛利率持续下降;同时受国家政策影响,地方奖补政策存在不确定性,影响了第四季度回收业务的盈利能力,公司进行减产,营业收入大幅下降,单体亏损
圆柱应用多点开花。全球圆柱电池市场正经历结构性变革,其核心驱动力首先来自技术进步和制造效率的提升。而随着圆柱电池制造商竞相布局从电动汽车到航空、人形机器人等多元化应用场景,一场围绕终端应用的争夺战已经打响,以上均预示着行业洗牌正在酝酿。大圆柱借力高端车型破局,制造效率与标准化优势
日韩企业将指望以大圆柱电池弯道超车。海外电动化集中押注,大圆柱电池风潮愈演愈烈。4月初消息,三星SDI官宣量产新一代46系大圆柱电池,主要供应美国市场,用于微型移动设备应用,完成首批交付后计划扩大供应群体,向电动汽车客户供应;亿纬锂能匈牙利工厂也在近期获得建筑许可,配套宝马的大圆柱电池
北极星储能网获悉,4月7日,冠盛股份发布其投资者关系活动记录,披露冠盛东驰固态电池项目预计今年年底开始投产,产能爬坡情况将根据现场调试和生产进度决定。冠盛股份提到,其固态电池有两个发展方向。在储能电池领域,采用磷酸铁锂半固态方案,正极材料为磷酸铁锂,负极材料为石墨,未来可能用到硅碳
“(未来几年)新一代动力全固态电池将实现产业化。从战略全局看,当前重点要防范的是全固态电池技术路线带来的颠覆性风险。”在日前举行的中国电动汽车百人会论坛(2025)上,中国科学院院士欧阳明高再次向行业发出警告。△图为中国科学院院士欧阳明高作主旨发言中国电池产业又走到了关键的节点。“这
北极星储能网获悉,3月24日消息,在2025徽商大会徽商回归项目集中签约仪式上,碳一新能源集团有限责任公司年产3万吨新型硅碳负极生产基地项目签约。项目将落户安徽池州皖江江南新兴产业集中区,总投资34亿元,拟用地500亩,主要产品为硅碳负极材料。项目分三期建设:一期投资7.6亿元,规划用地100亩,
近日,新疆胡杨河经济技术开发区与杭州锦江集团磋商,计划在胡杨河经济技术开发区谋划设立硅碳负极材料产业园,重点发展硅碳负极材料产业,进一步推动新材料产业链的拓展与升级。项目全面建成后,将形成年产15万吨颗粒硅及对应年产20万吨以上硅烷气的生产能力,力争成为新疆地区最大的多维度新能源材料
硅碳负极最近越来越火,曾经借势高镍三元,现在又搭上了固态电池。贝瑞特、璞泰来等负极大厂也纷纷押宝其中。然而,硅碳负极相关材料是否真能带领锂电负极企业走出盈利困境?目前市场显然期待过高。01技术突破,市场期待过于迫切2024年以来,硅碳负极技术取得了突飞猛进的发展。其中,2月12日,贝特瑞
北极星储能网获悉,1月14日,贝特瑞发布公告,公司董事长贺雪琴夫妇因涉嫌违法违规内幕交易“龙蟠科技”,收到中国证券监督管理委员会的行政处罚决定书。公告显示,涉嫌违法违规的事实为:因贺雪琴内幕交易“龙蟠科技”及贺雪琴、罗某某共同内幕交易“龙蟠科技”的行为违反了《证券法》第五十条、第五
研究机构EVTank分析认为,2024年将是之前两年全国新建石墨化和负极材料产能集中释放的一年,整个行业将面临着较大的产能过剩的压力,负极材料的价格仍将面临着较大的下行压力。另一方面,随着大量一体化产能的建成,第三方独立石墨化加工产能将面临着较大的开工压力。2024年上半年,在终端需求增速放缓
据长沙工信消息,4月18日,位于宁乡高新区的湖南阿斯米新材料有限公司自主研发的万吨级锂离子电池负极前驱体生产线正式启动,这是全球首台套万吨级锂离子电池负极前驱体连续自动化生产线。据了解,阿斯米公司投资30亿元建设锂离子电池石墨负极材料生产及相关设备制造基地项目,一期投资8亿元,设计年产
据国家知识产权局公告,近日,亿纬锂能、德方纳米2大电池公司分别申请了与硅有关的负极材料的专利。其中,亿纬锂能申请一项名为“一种硅复合负极材料及其制备方法和二次电池“;德方纳米申请一项名为“含高熵合金相的硅碳负极材料及其制备方法和锂离子电池“。具体来看,亿纬锂能专利摘要显示,本发明
回天新材12月5日晚间公告,为优化公司业务结构,加快实现锂电负极胶产能布局,促进公司新能源汽车及动力电池用胶战略业务发展,公司与黄山供销集团有限公司签订了《股权收购框架协议》,拟通过股权收购方式取得黄山供销集团控股的安庆华兰科技有限公司不低于51%的股权。
11月17日,就年产3万套锂电负极装备及3万吨锂电池负极材料项目,河南省渑池县人民政府与青岛正望新材料股份有限公司签署战略合作协议。该项目总投资2亿元。项目分两期进行建设,一期计划投资0.5亿元,半年内建成投产;二期计划投资1.5亿元,一年建成投产。产品包括石墨坩埚、石墨负极材料、半导体光伏
5月24日,索通发展锂电负极项目投产仪式在甘肃嘉峪关索通低碳产业园举行。上午11点08分,20万吨锂电池高端负极材料及配套项目一期正式送电成功投产。
2023年,必须得关注钠离子电池了。带着一种攻城略地的架势,越来越多的企业涌入这个赛道。有不少跨界的,甚至华为、碧桂园都入局了。钠离子电池企业中科海钠背后出现华为旗下哈勃投资的身影;众钠能源获得碧桂园投资;电子元件制造商传艺科技也宣布跨界钠离子电池,设立江苏传艺钠电科技有限公司。也有
北极星储能网获悉,中科电气10月27日公告,公司拟在兰州新区投资建设“年产10万吨锂电池负极材料一体化项目”,项目固定资产投资约25亿元,负极材料年产能10万吨。本次投资项目是公司产能布局的重要组成部分,同时也是公司全资子公司中科星城科技与重庆弗迪锂电池有限公司拟共同设立的合资公司的具体投
北极星储能网获悉,7月4日下午,由中比能源科技股份有限公司投建的南京中比新材料基地项目签约仪式在安徽淮北举行。据悉,该项目总投资50亿元,建设年产10万吨锂电负极和2万吨硅碳负极生产基地,预计项目全部达产后可实现产值120亿元。资料显示,中比新能源成立于2001年,是一家全球领先的集锂电池研发
4月2日,美国总统特朗普宣布对中国锂离子电池征收64.5%综合关税,并计划于2026年进一步上调至82%。这一系列关税举措可能彻底颠覆电网规模储能项目的经济性,对储能系统开发商正在推进或未来规划的项目发展前景蒙上阴影。太阳能发电设施的组件也受到了影响,从中国进口的多晶硅、硅片和光伏面板需缴纳60
北极星储能网获悉,5月8日,振华新材发布关于2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”专项行动方案。其中指出,多元化产品矩阵及前瞻性技术储备为公司在大增程电池、半固态/固态电池、低空经济、电动两轮车、UPS启停电池、重型商用电动车及储能等市场奠定了坚实的基
北极星储能网获悉,5月7日晚间,孚能科技发布公告称,公司于当日召开2025年第二次临时股东大会,审议通过董事会换届选举相关议案,本次董事会换届已完成。广州工业投资控股集团有限公司(以下简称“工控集团”)及其一致行动人通过提名并当选非独立董事人数超过公司非独立董事席位半数方式,实现对公司
当地时间5月7日,楚能新能源携全场景储能产品矩阵亮相在德国慕尼黑举办的欧洲智慧能源展(SmarterEEurope)。作为欧洲能源转型的重要参与者,楚能以472Ah大容量储能电芯及CORNEXM6电池预制舱为核心,为欧洲市场提供覆盖发电侧、电网侧、用户侧的一站式储能解决方案。以技术突破重构储能价值展会现场,
日前,英国格洛斯特郡的赛伦塞斯特混合太阳能发电厂发生火灾,该电站由23MWP光伏发电、51MWh锂电池储能电站构成,占地超过88英亩,相当于50多个足球场,由沃灵顿自治市议会拥有。火灾于下午3点左右发生,浓浓的黑烟喷向天空,从邻近地区和主要道路上都能看到,40多名消防员对紧急情况做出反应,使用大
北极星储能网获悉,2025年3月29日,英国格洛斯特郡的赛伦塞斯特混合太阳能发电厂发生火灾,该电站由23MWP光伏发电、51MWh锂电池储能电站构成,占地超过88英亩,相当于50多个足球场,由沃灵顿自治市议会拥有。火灾于下午3点左右发生,浓浓的黑烟喷向天空,从邻近地区和主要道路上都能看到,40多名消防员
4月30日,深圳市深汕特别合作区蓝威新能源有限公司发布深汕特别合作区蓝威能源储能电站项目设计施工总承包(EPC)招标公告,项目位于广东深圳,采用半固态锂离子电池、电池簇级管理器,液冷储能电池系统,包括储能单元、配套工程。容量为300MW/1200MWh。建成后可实现220KV交流输出1200MWh,满足4小时充
北极星储能网获悉,4月30日,孚能科技发布2025年度“提质增效重回报”行动方案。其中提到,在全固态电池方面,公司硫化物及复合物路线均取得较大突破,其中硫化物全固态电池已进入产品产业化开发阶段,产品、工艺及生产设备均处于开发中。硫化物固态电池沿用公司完善的叠片软包电池的制备工艺及设备,
日前,河北张家口南山汽车产业基地与三维(陕西)电池技术有限公司举行三维固态特种电池生产基地项目签约仪式。项目将建设第四代智能化电池工厂,计划总投资10亿元,总占地70亩,规划建筑面积10.2万平方米,分两期实施。其中,一期投资6亿元,二期投资4亿元,预留产能扩展空间。建成后可新增1GWh三维固
北极星储能网获悉,4月29日消息,欧洲汽车巨头Stellantis与美国初创公司FactorialEnergy联合研发的FEST固态电池成功通过车规级验证。据了解,FEST固态电池容量为77Ah,能量密度达到375Wh/kg,理论上可使电动车续航突破1000公里。经600次充放电循环后仍保持90%以上容量,达到车规级耐久标准。具备4C放电
4月25日,在山东省市场监督管理局的指导下,国际独立第三方检测、检验和认证机构德国莱茵TüV大中华区(简称“TüV莱茵”)联合山东省储能学会、山东省产品质量检验研究院在青岛举办“2025华北区新能源产业先进技术研讨会”。本次研讨会以“探索绿色可持续开创能源新未来”为主题,汇聚了专家学者和行
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!