北极星

搜索历史清空

  • 水处理
您的位置:电力技术正文

二氧化锰超级电容器的电极电化学性质

2016-08-19 10:59来源:中国新能源网关键词:超级电容器电极材料纳米MnO2收藏点赞

投稿

我要投稿

可以看出,电荷扩散可分为两阶段进行。在前85min内的绝对高电位范围,超级电容器电压从0.8V快速下降到0.57V;正极电位从0.50V下降到0.31V;负极则在前113min内快速地从-0.31V上升到-0.23V。

可以认为此高电位阶段为紧密层电荷快速向溶液扩散放电,其扩散速率大于分散层电荷向溶液的扩散速率,所以此阶段电极放电由紧密层电荷扩散决定。随着紧密层电荷扩散减少,其扩散速率也逐渐减少,最后,随着电极电位的降低,放电过程变为由分散层扩散速率决定,因此在接下来的5h内,正极电位下降到0.072V后基本保持不变,负极电位则上升到-0.13V。可看出,负极的电荷保持能力优于正极。

3结论

(1)通过对液相法制得菊花状形貌纳米MnO2电极材料测试,发现正负极电荷储存机制不同。其中,正极对电容器电压的影响起主要作用,其在0.43~0.50V以及0.35~0.31V电位(vs.Hg/HgO)范围内发生了电化学反应,而负极则表现稳定未发生反应。

(2)随着电极电位的增加,电极反应电阻与接触电阻减小,超级电容器电阻主要由负极决定。

(3)负极表面双电层的形成速度小于正极,而受电位的影响程度大于正极,其电荷保持能力亦优于正极。 

原标题:二氧化锰超级电容器的电极电化学性质
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>电极材料查看更多>纳米MnO2查看更多>