登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘要:质子交换膜(PEM)燃料电池的金属双极板在成本和加工成形方面具有优势,但是其易腐蚀的特点也影响了燃料电池的导电性和耐久性。该文从金属双极板及其涂层导电性和耐久性出发,系统总结了相关研究进展。
首先根据燃料电池的市场需求,分析了应用金属双极板的优势;对金属双极板及其涂层导电性和耐久性的典型测试方法进行了讨论,并对近期文献中出现的多种涂层进行了评价,发现除合金涂层外大部分涂层能满足美国能源部2020目标。
如图1所示,PEMFC的工作环境恶劣:高湿度、高电势、温度分布不均匀。同时,PEMFC的工作状况复杂,在实际的车辆应用中,燃料电池主要经历4种工况:启/停工况、怠速工况、高负载工况和变载工况。
工况的变化可能会导致反应气体不足,而反应气体不足和启/停工况则会带来高电势。此外,PEMFC在运行中偶尔也会发生控制故障,导致膜的干燥或水淹现象发生。研究燃料电池工作环境和工作状况下金属双极板的导电性和耐久性至关重要。
图1 PEMFC工作环境及工作状况对金属双极板的影响
本文聚焦于金属双极板及其涂层的导电性和耐久性,综述了相关研究进展。首先简要概述了近年来PEMFC电堆的产品市场,并根据燃料电池制造商的选择指出了研究金属双极板及其涂层的重要性,对涂层进行了分类。
然后,讨论了测试方法,对涂层进行了比较;接下来揭示了工作环境和工作状况对金属双极板及其涂层的导电性和耐久性有显著影响,阐述了各因素所造成的影响,最后提出了未来的研究方向。
1 双极板的类型与涂层
双极板是PEMFC电堆的重要组件,约占整体70%的质量和30%的价格。根据双极板材料的不同可以分为石墨双极板、金属双极板和复合双极板。石墨及其复合材料脆性大、渗气性高、成本较高,相比之下,金属双极板强度更高,具有更好的成形性、抗冲击性和较低的渗气性。
图2整理了部分国内外制造商的车用PEMFC电堆的体积功率密度及其双极板类型。根据适用的车型和功率不同,可将PEMFC电堆分为高功率、中功率、低功率3类。
图2 部分车用PEMFC电堆的体积功率密度及其双极板类型
图2中的大部分电堆都可以实现美国能源部(Department of Energy,DOE)2020年的目标(2.25 kW/L,下文简称为DOE2020目标),少数不能达到目标的是较早期的产品。
例如,HyundaiG100kW的电堆于2014年首次推出,并应用于Hyundaiix 35 FCEV和Tucson FCEV中;随着产品的迭代升级,2018年Hyundai Nexo使用的HyundaiG95kW电堆的体积功率密度从1.65kW/L提高到3.1kW/L。
金属双极板因其在超薄状态下的成形性能优于其他材料,在高功率电堆中得到了广泛应用,而石墨双极板和复合双极板一般用于中、低功率电堆中。
常用的金属双极板材料包括不锈钢、铝合金、钛合金、泡沫金属等。在众多金属材料中,不锈钢因其良好的机械性能和较低的成本得到了广泛应用。虽然不同不锈钢中元素的比例可能不同,但是元素种类是大致相同的,主要包括Fe、Ni、Mn、Cr、Cu、Mo等金属元素,以及C、N、P、S、Si等非金属元素。
金属双极板的导电性和耐久性受到表面形貌和结构的影响,在恶劣的工作环境中,金属双极板可能发生表面腐蚀和钝化。由于钝化膜能够保护膜下金属不受进一步的腐蚀,因此许多早期的PEMFC直接使用不锈钢、Al、Ti、Ni等容易形成钝化膜的材料作为双极板。
但是,钝化膜改变了双极板和扩散层的表面形貌,导致界面接触电阻(interfacecontactresistance,ICR)增大,会降低输出功率,且ICR随钝化膜厚度的增大而增大,因此目前的研究主要集中在金属双极板的涂层上根据涂层的元素组成。
涂层可分为金属涂层、非金属涂层和复合涂层。金属涂层包括金属氮化物涂层、金属碳化物涂层、金属氧化物涂层以及其他金属涂层(如贵金属涂层、合金涂层等)。
金属涂层具有优良的导电性和化学稳定性,但有些涂层的成本较高,如贵金属涂层,如今已较少使用;非金属涂层包括石墨基涂层和导电聚合物涂层,它们具有制备简单、成本低的特点,但有些涂层也存在耐蚀性差和易脱落的问题。
复合涂层结合了金属涂层和非金属涂层的优点,在具有一定耐蚀性的基础上,可以保持良好的导电性,但是掺杂的金属离子也会影响涂层的表面微观结构。涂层加工方法可以分为电镀、化学镀、气相沉积法、热处理法、离子注入法和喷涂法等。对相同成分的涂层采用不同的方法进行处理,导电性和耐久性会受到不同的影响。
2 金属双极板及其涂层的测试方法与结果
根据金属双极板及其涂层的ICR、腐蚀电流和腐蚀电势,能够比较它们的优劣。在PEMFC的可逆电压损失中,Ohm损失是降低导电性的一个重要因素,而因ICR造成的损失又占其中很大的一部分。
从影响PEMFC导电性的角度来看,需要考虑金属双极板的ICR;从金属双极板耐久性的角度来看,在PEMFC中,工作环境比较恶劣,一般用腐蚀电流密度和腐蚀电势表征涂层的耐久性。
2.1 ICR 测量方法
PEMFC的等效电路和Ohm内阻图如图3所示。Ohm内阻Rm包括本体电阻(双极板电阻RBP、气体扩散层电阻RGDL、催化层电阻RCL、质子膜电阻RPEM)和接触电阻(阳极侧双极板/气体扩散层电阻RABPGGDL、气体扩散层/催化层电阻RGDLGCL、催化层/质子膜电阻RCLGPEM 、阴极侧双极板/气体扩散层电阻RC BPGGDL)。
图3中Rct是电荷转移电阻,ZW是Warburg阻抗,Cdl是双电层电容。金属双极板的ICR为RABPGGDL+RC BPGGDL,约占PEMFC总内阻的55%。
图3 PEMFC的等效电路和Ohm 内阻图
ICR的测量方法有原位测量法和非原位测量法,非原位测量法如图4a所示,将金属双极板样品放置于两个镀金铜板中,施加一定的压力(DOE标准是140N/cm2),施加电流,测量电压,由式(1)可求得金属双极板的ICR,
原位测量法如图4b所示,将一根测量金线与双极板焊接在一起,另外一根测量金线插入气体扩散层(gasdiffusionlayer,GDL)中,在PEMFC工作过程中测量相应的电压和电流,由式(2)可求得金属双极板的ICR,
非原位测量法相对简单,且精度较高,是典型的测试方法;而原位测量法可以直接测量PEMFC运行过程中ICR的变化,并能够将其与PEMFC的性能和运行条件(如湿度、温度和气体流量等)关联起来,这是非原位测量法所不具备的优点,但是它的缺点是前期准备比较复杂。
图4 双极板ICR 的测量方法
2.2 腐蚀电流密度和腐蚀电势测量方法
较低的腐蚀电流密度和较高的腐蚀电势表明金属双极板具有良好的耐蚀性。将打磨好的样品作为工作电极,置于酸性环境中,采用电化学工作站,利用动电位(常用扫描速率为1mV/s)能够得到如图5所示的极化曲线,可以测定腐蚀电势,并通过外推得到腐蚀电流密度。
图5样品极化曲线
恒电位极化实验后获得的工作电势下的腐蚀电流密度用于衡量金属双极板的长期稳定性,在电势U=+0.6V 下的电流密度为阴极电势下的腐蚀电流密度,电势U=-0.1V 下的电流密度则为阳极电势下的腐蚀电流密度。
恒电位极化实验的环境是将样品浸泡于模拟PEMFC 阴极或阳极环境中(H2SO4+HF,70℃左右,模拟阳极环境鼓入氢气在-0.1V 进行极化,模拟阴极环境鼓入空气在+0.6V 进行极化),极化时间从1h到120h不等,直至电流密度稳定为止。
研究表明,模拟阴极环境由于存在高电势,相较于阳极环境,更易导致金属双极板腐蚀,模拟阴极环境下满足DOE 2020目标的材料也能满足模拟阳极环境下的要求,故本文主要对模拟阴极环境下的材料长期稳定性进行综述。
2.3 典型金属双极板及其涂层的测试结果
本节根据涂层制备方法和涂层类型,对典型金属双极板及其涂层进行了讨论。表1列出了其测试条件,并按照涂层类型进行了分类.
1)金属氮化物涂层
采用金属氮化物作为涂层的双极板表面结构比较致密,能够提供优良的保护。研究学者采用封闭场非平衡磁控溅射离子镀(closed field unbalanced magnetron sputter ion plating,CFUBMSIP)技术,利用不同的电流,将具有不同Mo含量的CrMoN膜镀到SS316L上,在电流4A 的条件下,得到的CrMoNG4A 涂层具有最佳的耐蚀性和ICR,表面致密、均匀、连续,有颗粒感,接触角为98.4°
2)金属碳化物涂层
采用金属碳化物作为涂层可以降低成本。研究学者采用双辉光等离子体表面改性技术直接在钛合金TA1上制备了TiC涂层,避免了昂贵而复杂的工艺问题,涂层均匀致密无缺陷,测得的接触角为112°,与无涂层的钛板相比,模拟阴极环境下的腐蚀电流密度降低了大约一个数量级,在140N的压力下,ICR为7.5mΩ/cm2,远低于无涂层的钛板的98.1mΩ/cm2。
H Wang等将CrC电镀到SS 304上,发现涂层中的C含量随着涂层电流密度的增加而降低,在10A/dm2的小电流电镀时表面状况良好,而在50A/dm2的大电流电镀时表面出现裂纹和针孔。
3)金属氧化物涂层
采用金属氧化物作为涂层比较简单,早期表面处理技术直接采用金属双极板上生成的氧化膜作为防护涂层,但是耐蚀性和ICR不佳。近期研究则是结合喷涂方法进行创新。研究学者采用球磨技术实现了2205双相不锈钢表面的Mo富集,形成的涂层表面呈波浪状,显著提高了在阴极环境的耐蚀性,降低了ICR值;
4)合金涂层
采用合金作为保护涂层的双极板表面结构比较粗糙,尚不能达到DOE2020目标。
5)非金属涂层
非金属涂层表面结构均匀致密。在SS316L基材上,Shanmugham 等用电化学聚合法制备了聚间苯二胺涂层和聚对苯二胺涂层,Li等用电化学沉积法制备了聚苯胺涂层,Bi等用磁控溅射法制备了非晶碳(aGc)涂层,这些研究都得到均匀致密、无明显缺陷存在的涂层。
6)复合涂层
复合涂层表面结构均匀致密,某些涂层还有金属粒子形核中心,增强了导电性。Bi等使用CFUBMSIP技术在SS316L基材上分别制备了CraGc涂层、TiaGc涂层和NbaGc涂层,表面结构都是致密均匀无缺陷的,它们的接触角分别为87.9°、75°和80.1°
3 金属双极板及其涂层导电性与耐久性影响因素
通过对相关文献的整理,归纳了工作环境和工作状况对金属双极板及其涂层耐久性的影响因素:
1)由于材料老化和控制策略不佳,使PEMFC的工作环境发生了变化,如温度、双极板表面液态水的pH 值、水中阴离子浓度变化等。
2)PEMFC在工作在启/停、怠速、高负载和变载4种工况下,各工况的电势和电流密度不同,所需的氢气和空气的过量系数也不同,不同的工作状况对金属双极板及涂层的耐久性有不同的影响。
电势对材料的耐久性影响很大。首先是在PEMFC阴极环境下,相较于阳极环境,双极板及其涂层更易发生老化。
其次是在相同的阴极环境下,高电势下的双极板更易发生腐蚀,无涂层的SS 316L在+0.6V时会发生点蚀现象,在大于+0.7V时会发生严重腐蚀;在有Mo 掺杂CrN 涂层的SS 316L样品中高电势下也是更易发生腐蚀。在启/停工况或瞬态电势变化时,由于反应气体不充分等原因,会产生特别高的电势,加速金属的腐蚀。
4 总结与展望
本文综述了近年来燃料电池用金属双极板的研究进展,对其表面微观结构和性能指标(界面接触电阻、腐蚀电势、极化前腐蚀电流密度、恒电位极化实验后阴极电势下的腐蚀电流密度)进行了比较。
研究发现,除合金涂层外,目前的大多数涂层都符合DOE 2020目标,具有良好的耐久性,能够满足当前的应用需要。涂层的表面结构影响着双极板的导电性和耐久性,这与涂层的材料和加工方法有关。
由于阴极环境劣于阳极环境,因此需要重点考虑阴极环境下的耐久性。对于许多涂层,在恒电位极化后的腐蚀电流密度较初始的腐蚀电流密度降低,说明经过一段时间工作后,涂层没有发生脱落或者破裂现象,更好地保护了基材,具有优良的耐久性。
影响涂层性能的因素分为工作环境和工作状况,工作环境包含温度、pH 值、F-浓度、Cl- 浓度、氢气浓度和双极板的接触压力等因素,工作状况包含电势、工况变化等因素,可采用“三等高线图”来表征各因素的影响。
一方面,在选择燃料电池组件时,可选择长寿命的膜电极和密封元件,减少离子逸出污染,以缓解PEMFC恶劣工作环境造成的影响;另一方面,在燃料电池运行控制时需要考虑电势、工况变化等因素,避免PEMFC因控制策略不佳,在恶劣的工作状况下工作。
对金属双极板及其涂层导电性和耐久性的未来研究可关注以下几方面:
1)测试方法的改进与应用:当前的耐久性加速测试方法主要为恒电位极化老化,未来可以进一步拓展动电位极化老化的相关研究,因为动电位能够很好地模拟燃料电池的工作状况;此外,还应加强对即时性能的研究,对老化过程中的ICR、腐蚀电流、腐蚀电势进行实时观测,以发挥燃料电池的最佳性能,指导控制策略的制定。
2)涂层的研究:当前绝大多数研究得到的涂层能够满足DOE 2020目标,具有良好的耐久性,但是合金涂层仍然存在不足,不能满足使用要求。今后的研究可以综合考虑材料与工艺,对两者进行组合以选择最佳涂层。
3)影响因素的比较:在统一的测试条件下,将工作环境和工作状况下的各影响因素作为变量,找到影响最大的因素,以及各因素之间的耦合关系,从而对双极板及其涂层的导电性和耐久性进行建模,在控制策略中规避不利因素,可以提升燃料电池的性能。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
9月10日,上海市浦东新区科技和经济委员会发布2024年度浦东新区科技发展基金产学研专项(未来车)申报指南。方案中涉及燃料电池汽车关键零部件,提及了其研究内容和执行期限。原文如下:2024年度浦东新区科技发展基金产学研专项(未来车)申报指南根据《浦东新区加快经济恢复迈出引领区建设更快步伐实
北极星氢能网获悉,8月7日,威孚高科发布公告,为进一步推进欧洲、北美基地氢燃料电池核心零部件膜电极、石墨双极板的产能和研发能力建设,公司拟以自有资金通过全资子公司WeifuHoldingApS对其全资子公司BoritNV(以下简称“Borit”)增资1435万欧元(合人民币1.13亿元);拟以自有资金通过全资子公司W
北极星氢能网获悉,8月7日,威孚高科发布公告,为进一步推进欧洲、北美基地氢燃料电池核心零部件膜电极、石墨双极板、金属双极板的产能和研发能力建设,拟对两家境外全资子公司增资。其中,公司拟以自有资金通过全资子公司WeifuHoldingApS(以下简称“SPV”)对其全资子公司IRDFuelCellsA/S(以下简称
北极星氢能网获悉,7月12日,青岛市氢能产业园重点项目集中签约活动举办。消息显示,本次签约上海满电未来氢能产业、青岛泊里华德诚志氢动能基金、氢能检验检测中心、碱性电解槽、宝碳双极板、招商银行“基金+产业+园区”创新金融服务等总投资23亿元的6个项目,涵盖氢能装备、燃料电池、园区金融服务等
随着全球对双碳目标的响应,被誉为终极绿色能源的氢能源,其重要性正日益凸显,市场需求不断攀升。德纳公司,作为氢燃料电池汽车产业的中坚力量,凭借其在双极板领域的专精研发和制造,正引领着氢能源技术的发展潮流。在2024国际氢能与燃料电池汽车大会暨展览会(FCVC2024)上,德纳就行业发展情况与北极
北极星氢能网获悉,4月3日,河南省第十二期“三个一批”项目建设活动—孟州市氢燃料电池及核心零部件产业园项目开工仪式在公司承建的孟州市氢能源产业园建设项目(一期)现场举行。据悉,孟州市氢能源产业园建设项目位于河南省孟州市西虢镇,项目占地面积约300亩,其中包括7栋厂房,1栋研发中心、污水
北极星氢能网获悉,2月29日晚间,上海重塑能源集团股份有限公司(以下简称“重塑能源”)向港交所提交上市申请,中金公司为独家保荐人。招股书显示,重塑能源是一家以市场化为导向并具备全球化视野的中国领先氢能科技企业。于往绩记录期间,公司专注于氢燃料电池系统、氢能装备及相关零部件的设计、开
北极星氢能网获悉,经国务院批准,国务院关税税则委员会21日对外发布公告,2024年将调整部分商品的进出口关税。根据公告,2024年1月1日起,我国将对1010项商品实施低于最惠国税率的进口暂定税率。其中,将降低燃料电池用气体扩散层等关键设备和零部件的进口关税,这将更好满足国内生产需要,加快推进我
北极星氢能网获悉,12月20日,风氢扬科技新款大功率燃料电池系统正式下线。活动同期,风氢扬科技与捷氢科技签署战略合作协议。据悉,风氢扬此次发布的新款大功率燃料电池系统,额定功率为132kW,首次集成了捷氢科技的金属双极板电堆,应用了风氢扬自创的EVO-IN技术平台,和风氢扬自主研发的智能化电气
北极星氢能网获悉,青骐骥集团下属全资子公司江苏氢骐科技有限公司位于常州的工厂二期项目正式建成投产后,产能快速释放,已成功完成中国华能集团1300Nm3/h碱性电解制氢系统试制设备项目、中石油首个规模化可再生能源电解槽制氢成套设备项目和亨通集团制氢电解槽核心零部件供应及装配服务项目中双极板
北极星氢能网获悉,9月23日,精工科技董事会审议通过了《关于聘任公司总经理的议案》,董事会提名李爱军先生为第八届董事会非独立董事候选人,任期自公司2023年第五次临时股东大会审议通过之日起至本届董事会任期结束之日(2024年8月27日)止。据了解,李爱军为上海大学教授、博士生导师,研究领域包括
北极星氢能网获悉,近日,苏州思萃熔接技术研究所有限公司(以下简称“思萃熔接所”)宣布其产业化的子公司苏州有执激光智能科技有限公司的氢燃料电池金属双极板产线已经正式投产。据悉,该氢燃料电池金属双极板产线采用了高效激光焊接技术,并配备了油压机,清洗线,自动高速高精度激光产线,密封工位
北极星氢能网获悉,11月21日,雪人股份发布公告称,公司与日本氢动力公司在福州签署了《金属极板燃料电池电堆委托开发合同》,基于公司与氢动力公司签订的战略合作协议,为加速推进氢燃料电池电堆的产业化与商业化,公司将委托氢动力公司开发用于燃料电池动力系统的金属极板燃料电池电堆。本合同为委托
北极星氢能网获悉,2022年8月31日,航天氢能(上海)科技有限公司(简称航天氢能)圆满完成100台额定功率百千瓦级金属双极板燃料电池堆生产任务,产品性能全部达到设计要求,9月将完成系统集成交付主机厂。通过此次批产实施,有力提升了公司电堆规模生产组织能力。本次批产的大功率金属双极板燃料电池
在实现“双碳”目标的背景下,作为“终极清洁能源”的氢能以其环保、动力强劲、续航能力强等优势受到越来越多的市场关注。作为精冲技术领导者的法因图尔集团再一次领先于市场完成了布局。法因图尔将其优势的精冲技术创造性拓展了精冲工艺,成功的研发出适用于金属双极板的冲压生产技术Feinforming。法
全球能源行业都在经历以低碳化、无碳化、低污染为方向的第三次能源革命,氢能将成为第三次能源变革的重要媒介。世界氢理事会认为,到2050年,以氢作为能源的燃料电池车辆将在所有车辆中占比达到20%,大约4亿辆汽车,1千5百万到2千万辆卡车,以及大约5百万辆巴士。法因图尔集团作为精冲,冷成型及硅钢片
近日,常州翊迈新材料科技有限公司以股权投资的方式,整合并入上海骥翀氢能科技有限公司,成为骥翀氢能全资子公司。
西部材料回复称:公司目前正在研发车用氢燃料电池金属双极板。
3月28日,上海治臻新能源装备有限公司(以下简称“上海治臻”)年产千万片级金属极板产线投产仪式在常熟市高新区举行,这是目前全球最大的一条金属极板产线。由于上海治臻在金属双极板细分领域的龙头地位,这条产线投产,意味着在当前全社会脱碳减排背景下,氢燃料电池终端需求已迈入快速增长期。
3月24日,斗山创新与浦项钢铁SPS签订了战略合作协议,双方将合作开发用于氢动力无人机的20μm超薄金属双极板。
11月12日消息,据天眼查公开信息显示,近日,珠海格力电器股份有限公司,新增多条专利信息,其中包括“一种燃料电池金属双极板及燃料电池”“电池极板、双极板结构以及具有其的燃料电池”。据悉,“一种燃料电池金属双极板及燃料电池”申请日在2020年1月,专利摘要显示,本实用新型公开一种燃料电池金
9月10日,上海市浦东新区科技和经济委员会发布2024年度浦东新区科技发展基金产学研专项(未来车)申报指南。方案中涉及燃料电池汽车关键零部件,提及了其研究内容和执行期限。原文如下:2024年度浦东新区科技发展基金产学研专项(未来车)申报指南根据《浦东新区加快经济恢复迈出引领区建设更快步伐实
北极星氢能网获悉,8月7日,威孚高科发布公告,为进一步推进欧洲、北美基地氢燃料电池核心零部件膜电极、石墨双极板的产能和研发能力建设,公司拟以自有资金通过全资子公司WeifuHoldingApS对其全资子公司BoritNV(以下简称“Borit”)增资1435万欧元(合人民币1.13亿元);拟以自有资金通过全资子公司W
北极星氢能网获悉,8月7日,威孚高科发布公告,为进一步推进欧洲、北美基地氢燃料电池核心零部件膜电极、石墨双极板、金属双极板的产能和研发能力建设,拟对两家境外全资子公司增资。其中,公司拟以自有资金通过全资子公司WeifuHoldingApS(以下简称“SPV”)对其全资子公司IRDFuelCellsA/S(以下简称
随着全球对双碳目标的响应,被誉为终极绿色能源的氢能源,其重要性正日益凸显,市场需求不断攀升。德纳公司,作为氢燃料电池汽车产业的中坚力量,凭借其在双极板领域的专精研发和制造,正引领着氢能源技术的发展潮流。在2024国际氢能与燃料电池汽车大会暨展览会(FCVC2024)上,德纳就行业发展情况与北极
北极星氢能网获悉,4月3日,河南省第十二期“三个一批”项目建设活动—孟州市氢燃料电池及核心零部件产业园项目开工仪式在公司承建的孟州市氢能源产业园建设项目(一期)现场举行。据悉,孟州市氢能源产业园建设项目位于河南省孟州市西虢镇,项目占地面积约300亩,其中包括7栋厂房,1栋研发中心、污水
北极星氢能网获悉,2月29日晚间,上海重塑能源集团股份有限公司(以下简称“重塑能源”)向港交所提交上市申请,中金公司为独家保荐人。招股书显示,重塑能源是一家以市场化为导向并具备全球化视野的中国领先氢能科技企业。于往绩记录期间,公司专注于氢燃料电池系统、氢能装备及相关零部件的设计、开
北极星氢能网获悉,经国务院批准,国务院关税税则委员会21日对外发布公告,2024年将调整部分商品的进出口关税。根据公告,2024年1月1日起,我国将对1010项商品实施低于最惠国税率的进口暂定税率。其中,将降低燃料电池用气体扩散层等关键设备和零部件的进口关税,这将更好满足国内生产需要,加快推进我
北极星氢能网获悉,12月20日,风氢扬科技新款大功率燃料电池系统正式下线。活动同期,风氢扬科技与捷氢科技签署战略合作协议。据悉,风氢扬此次发布的新款大功率燃料电池系统,额定功率为132kW,首次集成了捷氢科技的金属双极板电堆,应用了风氢扬自创的EVO-IN技术平台,和风氢扬自主研发的智能化电气
北极星氢能网获悉,9月23日,精工科技董事会审议通过了《关于聘任公司总经理的议案》,董事会提名李爱军先生为第八届董事会非独立董事候选人,任期自公司2023年第五次临时股东大会审议通过之日起至本届董事会任期结束之日(2024年8月27日)止。据了解,李爱军为上海大学教授、博士生导师,研究领域包括
7月24日晚间,中原内配发布公告称,公司投资设立的氢能项目子公司,已于近日完成工商注册。新公司的名称为北京豫舟同达氢能科技有限公司,注册地位于北京市大兴区,注册资本5000万元;主要从事氢燃料电池发动机双极板的研发、制造与销售;经营范围包含新兴能源技术研发、新材料技术研发、新材料技术推
北极星氢能网获悉,4月18日,中原内配发布公告称,中原内配拟与上海重塑能源集团股份有限公司、北京氢璞创能科技有限公司就“氢燃料电池发动机双极板”项目共同投资设立合资公司(暂定名称为“中原内配同极(河南)氢能科技有限公司”),合资公司主要从事氢燃料电池发动机双极板的研发、制造与销售(具
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!