北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻储能储能电池锂电池评论正文

锂硫电池隔膜在不同抑制“穿梭效应”策略中的研究进展

2022-11-25 14:53来源:储能科学与技术作者:马康 等关键词:储能电池锂硫电池储能技术收藏点赞

投稿

我要投稿

1.2.2 路易斯酸碱相互作用

根据路易斯酸碱理论的定义,路易斯碱是具有填充轨道的物质,包含不参与键合的电子对,而路易斯酸具有接受电子的空轨道,酸碱之间形成配位键。Li2Sx中Li+具有路易斯酸性质,而多硫化物阴离子(Sx2-,4≤x≤8)具有路易斯碱的性质,金属氧化物、金属硫化物等金属化合物中的金属离子可以通过路易斯酸碱相互作用从Sx2-中获得额外的电子,达到化学吸附多硫化物的作用。但是并不是所有的过渡金属元素都能与多硫化物阴离子形成金属-硫键,Han等发现原子序数较低的过渡金属具有较少的填充反键态和有效的d-p轨道杂化。为了验证低原子序数的过渡金属元素更容易与多硫化物阴离子结合形成金属-硫键,进行了晶体轨道哈密顿布局(COHP)分析。如图8所示,表明低原子序数的单原子金属催化剂(SACs)如Ti、V,金属-硫键较强,导致S—S键减弱,显示出有效的金属-硫键结合与多硫化锂中弱化的S—S键之间的相关性。然而,具有最低价电子数的SACs Sc,由于其大原子半径和长Sc—S键,所以Sc—S键强度相对较弱。综上,SACs Ti与多硫化物阴离子具有优异的结合能力,以及能使长链的多硫化物更容易解离并转化为短链多硫化物,最终达到抑制多硫化物穿梭的目的。

9.jpg

图8 COHP分析过渡金属-硫和硫-硫键的强度

金属氧化物由于其强大的极性表面和丰富的亲水氧基团,对极性多硫化物具有很高的化学亲和力。Zhang等制备了多孔通道发达的氧化铝涂层隔膜,其弯曲的孔道结构可用于捕捉和沉积多硫化物。但由于Al2O3导电性较差,所以Chen等将Al2O3涂层表面涂了一层碳纳米管(CNTs),CNTs的高导电性可以分别促进硫及其相应放电产物的反应动力学,用CNT/Al2O3涂层修饰的隔膜组装成的电池在0.2 C电流倍率下,100次循环后放电容量为760.4 mAh/g,而使用普通PP隔膜的Li-S电池100次循环后放电容量低至311 mAh/g,CNT/Al2O3隔膜表现出更优异的循环性能。

采用Al2O3、SiO2等陶瓷颗粒的涂层局限于对多硫化物的物理限制,并没有直接作用于调节Li+的传输。上述吸附作用在吸附过程中吸附位点可能会被消耗,锂离子的传输通道可能会被修饰层捕获的多硫化物堆积而发生堵塞,导致电池性能下降。为了进一步了解中间多硫化物的缓慢转化机理,加速多硫化物的转化是缓解多硫化物穿梭的关键途径。因此有研究提出了化学吸附和电催化协同作用来抑制多硫化物的穿梭。Wang等根据酸性KMnO4的强氧化性能,将PP隔膜放在酸性KMnO4溶液中50 ℃恒温浸泡1 h,直接在隔膜的一侧构建超薄自组装MnO2涂层(SMO)。通过XPS谱图分析(图9),S 2p谱中有6个拟合峰,分别对应硫、聚硫酸盐、硫酸盐三种物质,Mn 2p3/2在641.0 eV处的峰值对应Mn3+,表明MnO2颗粒与多硫化物发生催化作用,导致化学价态发生改变。将SMO隔膜组装成电池进行电化学测试,在0.5 C的放电倍率下150次充放电循环后,仍能保持603 mAh/g的放电容量,而普通的PP隔膜循环之后放电容量仅为408 mAh/g,随后将循环次数增加至500次,具有SMO隔膜的Li-S电池放电容量依旧保持在494 mAh/g,每周期的平均容量衰减仅为0.058%。

10.jpg

图9 SMO隔膜吸附试验后的XPS光谱图

然而,值得注意的是由于金属氧化物本身导电性不好。大多数金属氧化物总是与导电基底材料结合以提高导电性,保证电子快速传输到隔膜修饰层,加速Li-S电池中多硫化物的转化。对此,Liu等在隔膜上设计了多功能Nb2O5-CNT催化界面,以有效抑制多硫化物穿梭。具有Nb2O5-CNT催化界面的锂硫电池在0.2 C下首次放电容量高达1286 mAh/g,循环100次后仍能保持992 mAh/g的放电容量。优异的电化学性能主要归因于碳纳米管导电表面的超薄Nb2O5纳米粒子对多硫化物的强化学吸附能力,以及作为电催化剂加速对捕获多硫化物的转化能力。如图10所示,Nb2O5-CNT/PP隔膜的氧化还原峰发生了有利的位移,氧化还原峰间隙变窄。这些结果进一步表明,由于Nb2O5-CN表面的催化作用,使得多硫化物转化的氧化还原反应动力学增强。

11.jpg

图10 采用PP、CNT/PP和Nb2O5-CNT/PP隔膜的Li-S电池电化学性能

金属硫化物具有很强的亲硫性和相对较低的锂化电位,这使其对Li-S电池中的氧化还原反应具有良好的电催化作用,可以作为吸附多硫化物的骨架,此外金属硫化物相比金属氧化物具有更高的导电性。Tan等设计一种用于抑制穿梭效应和改善Li-S电池电化学性能的rGO@MoS2涂层,其中rGO用作多硫化物物理屏障和电子导电网络,MoS2起到对多硫化物的化学吸附作用(图11),并充当锂导体。装有rGO@MoS2涂层隔膜组装成的电池在0.2 C下循环200次放电容量保持在671 mAh/g,容量保持率为70%,然而具有普通PP隔膜的电池循环后容量为399 mAh/g,容量保持率为52%,验证了rGO@MoS2涂层可以提高电池的电化学稳定性。研究者们提出了二维结构的MoS2具有金属性和半导体性。Jeong等发现电化学剥离方法不仅在横向尺寸和层数方面有效地剥离高质量的MoS2,而且能够提供1T金属相MoS2,在捕捉多硫化物的同时促进电子转移,提高硫的利用率。将1T MoS2-CNT隔膜组装成电池在1 C高电流密度下,500次循环之后显示出约670 mAh/g的放电容量,而具有CNT涂层的电池在同样电流密度下在400圈之后放电容量仅为200 mAh/g。Wu等提出了一种由二维纳米材料逐层自组装制作功能涂层,由带正电的MoS2-聚二烯丙基二甲基氯化铵(PDDA)复合物与带负电的聚丙烯酸(PAA)交替沉积,形成双面的“纳米砖墙”结构,创造一条曲折的迂回路径,极大地阻碍了多硫化物穿梭。同时,MoS2纳米片和PAA以化学方式吸附多硫化物。具有超轻(M-P/P)10涂层的Li-S电池,在1 C电流密度下,循环2000次后,每循环的平均容量衰减率降至0.029%。

12.jpg

图11 Li2S6溶液被MoS2吸附前后的紫外吸收光谱和照片

Yang等通过将分散的硫化锌纳米球包裹在石墨烯状超薄褶皱碳膜上(ZnS@WCF)制备一种新型的功能涂层。根据XPS结果表明,ZnS通过S-Zn和Li-S结合对多硫化锂表现出强烈的化学作用。此外ZnS@WCF在Li2S成核试验中表现出最高的成核能力(图12),证明ZnS@WCF降低了多硫化物转化的能量势垒。得益于卓越的催化能力,基于ZnS@WCF隔膜的Li-S电池在1 C的放电倍率下循环600次后,仍能保持685 mAh/g的高放电比容量。最近,研究人员为了进一步抑制多硫化物的扩散,探索出了具有异质结构的Li-S电池功能性隔膜。Yao等通过结合SnS的强吸附性和高导电性以及ZnS的良好催化能力,在由聚多巴胺衍生的N掺杂碳壳表面获得了具有均匀立方形貌的ZnS-SnS@NC异质结构,该异质结构带来了更多的电化学活性位点,并且多孔碳结构作为离子筛,从而促进锂的均匀沉积。该隔膜所组装的电池在4 C高放电倍率下初始放电容量提高至845 mAh/g,循环2000次后依然能够保持较高的可逆容量632 mAh/g,容量衰减率仅为0.013%,表现出良好的循环和倍率性能。

13.jpg

图12 ZnS、WCF、ZnS@WCF对称电池的电化学测试:Li2S 成核试验

与杂原子掺杂碳材料涂层相比,过渡金属化合物涂层可以在捕获多硫化物的情况下,降低多硫化物转化能量势垒,为捕获多硫化物提供更多的吸附位点,进一步提高了Li-S电池的循环稳定性。然而导电性极差的过渡金属化合物(如过渡金属氧化物)不能保证电子传输到隔膜的修饰层,造成捕获的多硫化物堆积堵塞锂离子的传输通道,因此过渡金属化合物与导电碳材料复合。但由于导电碳材料具有多孔结构和高比表面积等特点,在其复合过程中不仅会增加隔膜厚度而且会大幅度增加对电解质的消耗,导致Li-S电池整体的能量密度下降。因此,需要开发一种导电性好、轻质、吸附性强的功能隔膜,在抑制多硫化物穿梭的同时提高Li-S电池的能量密度。

将利用化学限制策略的聚丙烯基改性隔膜电化学性能列于表2。

表2 化学限制聚丙烯基改性隔膜电化学性能

14.jpg

2 纤维素基改性隔膜

相比传统的聚烯烃隔膜,纤维素隔膜由于具有优异的浸润性和低成本等优势而备受关注,特别是纤维素隔膜表面丰富的羟基使纤维素成为一种极性很强的聚合物,为化学修饰功能性隔膜提供了新的基体材料。

Yu等利用具有纤维素基多孔的凝胶面膜作为隔膜,经过简单的处理,不仅能有效限制多硫化物的穿梭,还能保持锂离子在负极与电解液表面均匀沉积,抑制锂枝晶的生长。Li等利用生物纤维素(BC)丰富的伯羟基经过TEMPO氧化成为羧酸酯基团,进而形成显电负性的界面(图13)来阻止多硫化物的穿梭。将PP隔膜和氧化后的BC隔膜(o-BC)分别组装成Li-S电池,在高载硫量(4 mg/cm2)下,具有PP隔膜的电池循环至100次放电比容量就已经衰减至600 mAh/g,而具有改性隔膜的电池循环300次后放电比容量高达735 mAh/g,对应每个循环的平均容量衰减率仅为0.07%,明显优于商用的PP隔膜。MXene相一般是通过选择性刻蚀MAX相获得层状过渡金属碳化物或氮化物,具有优异的导电性和丰富的官能团。Wu等提出了一种基于多孔细菌纤维素(PBC)的Ti3C2Tx-SnS2-PBC隔膜。一方面PBC具有高耐温性和抗穿刺性,提高了Li-S电池的安全性能;另一方面Ti3C2Tx-SnS2涂层可以通过路易斯酸碱作用捕获多硫化物,并通过催化活性位点促进氧化还原动力学。将Ti3C2Tx-SnS2-PBC隔膜组装成电池在0.2 C放电倍率下初始容量高达1390.9 mAh/g,循环500次后仍能保持862.1 mAh/g的放电容量,而PP膜组装成的电池循环500次后放电比容量仅为247.9 mAh/g,电池的容量保持率比PP隔膜高71.2%。

15.jpg

图13 p-BC和o-BC样品的Zeta电位

Wu等开发了一种具有“漏斗效应”的先进Li-S电池隔膜,在醋酸纤维素静电纺丝隔膜(CA)上原位聚合一层具有微孔结构的环糊精(β-CD)膜,并在膜的另一侧沉积一层碳作为上集流器。具有微孔结构的复合隔膜为抑制多硫化物穿梭提供了最佳的孔径(0.6~0.78 nm),并且微孔膜表面丰富的含氧极性基团可以化学吸附多硫化物,形成阻碍多硫化物的第二道屏障。将β-CD/CA/C、PP隔膜组装成电池,在0.2 C放电倍率下,具有PP隔膜的Li-S电池在600次循环后放电比容量仅为280 mAh/g,而具有β-CD/CA/C隔膜的Li-S电池初始放电容量为1378 mAh/g,经过1000次循环之后放电比容量高达863 mAh/g,是PP隔膜500次循环之后放电比容量的3倍以上。最主要的是,环糊精特有的截锥结构造成膜两侧产生不同的流体压力,导致在充电测试中(图14),具有β-CD膜的电池充电速率比普通PP隔膜的电池高65.3%。该隔膜的“漏斗效应”为Li-S电池快速充电提供了一种新型高效的解决方案。Li等发现纤维素纳米纤维中的异丙醇含量可以微调膜的孔隙结构,所以将纤维素纳米纤维(CNF)悬浮液与异丙醇水溶液混合搅拌,通过控制其中异丙醇与水的体积比调节CNF隔膜的孔结构,以实现最佳的电化学性能。将CNF膜组装成电池之后,在0.2 C放电倍率下,100次循环后放电比容量为589 mAh/g,相比具有PP隔膜的Li-S电池(100次循环之后放电比容量为459 mAh/g)有很大改善。如图15所示,通过DFT计算得出CNF隔膜中的含氧官能团也能对多硫化物具有一定的吸附能力,所以CNF隔膜良好的电化学性能不仅取决于CNF膜具有的微孔结构,还与含氧极性官能团吸附多硫化物有关。

16.jpg

图14 快速充电性能图

17.jpg

图15 DFT模拟Li2S6和CNF的相互作用

3 结论

本工作主要介绍了以聚烯烃隔膜和新型纤维素隔膜作为改性基体材料,不同抑制多硫化物穿梭的方法对Li-S电池充放电比容量、库仑效率、循环寿命的影响。基于传统的聚烯烃隔膜改性的功能性隔膜在不同的抑制策略下使Li-S电池表现出优异的电化学性能,为以后构建同时具有静电排斥、空间位阻、路易斯酸碱等作用的功能性隔膜奠定了基础。此外新型的纤维素隔膜表面丰富的羟基基团,可以通过化学方式修饰隔膜如酯化、氧化、醚化、接枝等,为隔膜的修饰开辟了一条新的途径。

虽然功能性隔膜研究取得了一定的成就,但是目前仍面临以下技术难题。第一,传统的聚烯烃隔膜活性位点较少,隔膜修饰只能通过物理涂覆实现,但额外的涂层不可避免地增加了隔膜的厚度,所以需要开发一种能够通过化学反应修饰传统聚烯烃隔膜的方法,来提高Li-S电池的能量密度。第二,虽然纤维素隔膜具有丰富的活性位点,可以通过化学反应修饰隔膜,但是其受制备工艺的影响,造成纤维与纤维之间的孔隙过大,无法实现对多硫化物和锂离子的有效筛分,所以通过化学改性优化纤维素隔膜孔隙结构是现在的主要研究方向。此外纤维素膜较差的力学性能,无法避免负极锂枝晶刺穿隔膜导致电池短路所带来的安全问题,所以需要利用纤维素表面多活性位点的特性将无机材料接枝在隔膜表面,提高纤维素隔膜的机械强度和对多硫化物的化学吸附性。第三,过渡金属元素对多硫化物的催化机理和影响因素还不明确,而这是能否准确控制Li-S电池隔膜化学改性效果的关键所在。第四,由于金属氧化物等常见极性材料导电性差,吸附的多硫化物很难有效地再利用,尤其在长循环过程中吸附的多硫化物附着在隔膜表面,无法被重新激活,导致硫的利用率降低,因此,急需开发同时具有高导电性和强多硫化物吸收性的先进隔膜涂层材料。对于以上问题的进一步探索将是推动Li-S电池商业发展的重要前提。


投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

储能电池查看更多>锂硫电池查看更多>储能技术查看更多>