登录注册
请使用微信扫一扫
关注公众号完成登录
图8 COHP分析过渡金属-硫和硫-硫键的强度
金属氧化物由于其强大的极性表面和丰富的亲水氧基团,对极性多硫化物具有很高的化学亲和力。Zhang等制备了多孔通道发达的氧化铝涂层隔膜,其弯曲的孔道结构可用于捕捉和沉积多硫化物。但由于Al2O3导电性较差,所以Chen等将Al2O3涂层表面涂了一层碳纳米管(CNTs),CNTs的高导电性可以分别促进硫及其相应放电产物的反应动力学,用CNT/Al2O3涂层修饰的隔膜组装成的电池在0.2 C电流倍率下,100次循环后放电容量为760.4 mAh/g,而使用普通PP隔膜的Li-S电池100次循环后放电容量低至311 mAh/g,CNT/Al2O3隔膜表现出更优异的循环性能。
采用Al2O3、SiO2等陶瓷颗粒的涂层局限于对多硫化物的物理限制,并没有直接作用于调节Li+的传输。上述吸附作用在吸附过程中吸附位点可能会被消耗,锂离子的传输通道可能会被修饰层捕获的多硫化物堆积而发生堵塞,导致电池性能下降。为了进一步了解中间多硫化物的缓慢转化机理,加速多硫化物的转化是缓解多硫化物穿梭的关键途径。因此有研究提出了化学吸附和电催化协同作用来抑制多硫化物的穿梭。Wang等根据酸性KMnO4的强氧化性能,将PP隔膜放在酸性KMnO4溶液中50 ℃恒温浸泡1 h,直接在隔膜的一侧构建超薄自组装MnO2涂层(SMO)。通过XPS谱图分析(图9),S 2p谱中有6个拟合峰,分别对应硫、聚硫酸盐、硫酸盐三种物质,Mn 2p3/2在641.0 eV处的峰值对应Mn3+,表明MnO2颗粒与多硫化物发生催化作用,导致化学价态发生改变。将SMO隔膜组装成电池进行电化学测试,在0.5 C的放电倍率下150次充放电循环后,仍能保持603 mAh/g的放电容量,而普通的PP隔膜循环之后放电容量仅为408 mAh/g,随后将循环次数增加至500次,具有SMO隔膜的Li-S电池放电容量依旧保持在494 mAh/g,每周期的平均容量衰减仅为0.058%。
图9 SMO隔膜吸附试验后的XPS光谱图
然而,值得注意的是由于金属氧化物本身导电性不好。大多数金属氧化物总是与导电基底材料结合以提高导电性,保证电子快速传输到隔膜修饰层,加速Li-S电池中多硫化物的转化。对此,Liu等在隔膜上设计了多功能Nb2O5-CNT催化界面,以有效抑制多硫化物穿梭。具有Nb2O5-CNT催化界面的锂硫电池在0.2 C下首次放电容量高达1286 mAh/g,循环100次后仍能保持992 mAh/g的放电容量。优异的电化学性能主要归因于碳纳米管导电表面的超薄Nb2O5纳米粒子对多硫化物的强化学吸附能力,以及作为电催化剂加速对捕获多硫化物的转化能力。如图10所示,Nb2O5-CNT/PP隔膜的氧化还原峰发生了有利的位移,氧化还原峰间隙变窄。这些结果进一步表明,由于Nb2O5-CN表面的催化作用,使得多硫化物转化的氧化还原反应动力学增强。
图10 采用PP、CNT/PP和Nb2O5-CNT/PP隔膜的Li-S电池电化学性能
金属硫化物具有很强的亲硫性和相对较低的锂化电位,这使其对Li-S电池中的氧化还原反应具有良好的电催化作用,可以作为吸附多硫化物的骨架,此外金属硫化物相比金属氧化物具有更高的导电性。Tan等设计一种用于抑制穿梭效应和改善Li-S电池电化学性能的rGO@MoS2涂层,其中rGO用作多硫化物物理屏障和电子导电网络,MoS2起到对多硫化物的化学吸附作用(图11),并充当锂导体。装有rGO@MoS2涂层隔膜组装成的电池在0.2 C下循环200次放电容量保持在671 mAh/g,容量保持率为70%,然而具有普通PP隔膜的电池循环后容量为399 mAh/g,容量保持率为52%,验证了rGO@MoS2涂层可以提高电池的电化学稳定性。研究者们提出了二维结构的MoS2具有金属性和半导体性。Jeong等发现电化学剥离方法不仅在横向尺寸和层数方面有效地剥离高质量的MoS2,而且能够提供1T金属相MoS2,在捕捉多硫化物的同时促进电子转移,提高硫的利用率。将1T MoS2-CNT隔膜组装成电池在1 C高电流密度下,500次循环之后显示出约670 mAh/g的放电容量,而具有CNT涂层的电池在同样电流密度下在400圈之后放电容量仅为200 mAh/g。Wu等提出了一种由二维纳米材料逐层自组装制作功能涂层,由带正电的MoS2-聚二烯丙基二甲基氯化铵(PDDA)复合物与带负电的聚丙烯酸(PAA)交替沉积,形成双面的“纳米砖墙”结构,创造一条曲折的迂回路径,极大地阻碍了多硫化物穿梭。同时,MoS2纳米片和PAA以化学方式吸附多硫化物。具有超轻(M-P/P)10涂层的Li-S电池,在1 C电流密度下,循环2000次后,每循环的平均容量衰减率降至0.029%。
图11 Li2S6溶液被MoS2吸附前后的紫外吸收光谱和照片
Yang等通过将分散的硫化锌纳米球包裹在石墨烯状超薄褶皱碳膜上(ZnS@WCF)制备一种新型的功能涂层。根据XPS结果表明,ZnS通过S-Zn和Li-S结合对多硫化锂表现出强烈的化学作用。此外ZnS@WCF在Li2S成核试验中表现出最高的成核能力(图12),证明ZnS@WCF降低了多硫化物转化的能量势垒。得益于卓越的催化能力,基于ZnS@WCF隔膜的Li-S电池在1 C的放电倍率下循环600次后,仍能保持685 mAh/g的高放电比容量。最近,研究人员为了进一步抑制多硫化物的扩散,探索出了具有异质结构的Li-S电池功能性隔膜。Yao等通过结合SnS的强吸附性和高导电性以及ZnS的良好催化能力,在由聚多巴胺衍生的N掺杂碳壳表面获得了具有均匀立方形貌的ZnS-SnS@NC异质结构,该异质结构带来了更多的电化学活性位点,并且多孔碳结构作为离子筛,从而促进锂的均匀沉积。该隔膜所组装的电池在4 C高放电倍率下初始放电容量提高至845 mAh/g,循环2000次后依然能够保持较高的可逆容量632 mAh/g,容量衰减率仅为0.013%,表现出良好的循环和倍率性能。
图12 ZnS、WCF、ZnS@WCF对称电池的电化学测试:Li2S 成核试验
与杂原子掺杂碳材料涂层相比,过渡金属化合物涂层可以在捕获多硫化物的情况下,降低多硫化物转化能量势垒,为捕获多硫化物提供更多的吸附位点,进一步提高了Li-S电池的循环稳定性。然而导电性极差的过渡金属化合物(如过渡金属氧化物)不能保证电子传输到隔膜的修饰层,造成捕获的多硫化物堆积堵塞锂离子的传输通道,因此过渡金属化合物与导电碳材料复合。但由于导电碳材料具有多孔结构和高比表面积等特点,在其复合过程中不仅会增加隔膜厚度而且会大幅度增加对电解质的消耗,导致Li-S电池整体的能量密度下降。因此,需要开发一种导电性好、轻质、吸附性强的功能隔膜,在抑制多硫化物穿梭的同时提高Li-S电池的能量密度。
将利用化学限制策略的聚丙烯基改性隔膜电化学性能列于表2。
表2 化学限制聚丙烯基改性隔膜电化学性能
2 纤维素基改性隔膜
相比传统的聚烯烃隔膜,纤维素隔膜由于具有优异的浸润性和低成本等优势而备受关注,特别是纤维素隔膜表面丰富的羟基使纤维素成为一种极性很强的聚合物,为化学修饰功能性隔膜提供了新的基体材料。
Yu等利用具有纤维素基多孔的凝胶面膜作为隔膜,经过简单的处理,不仅能有效限制多硫化物的穿梭,还能保持锂离子在负极与电解液表面均匀沉积,抑制锂枝晶的生长。Li等利用生物纤维素(BC)丰富的伯羟基经过TEMPO氧化成为羧酸酯基团,进而形成显电负性的界面(图13)来阻止多硫化物的穿梭。将PP隔膜和氧化后的BC隔膜(o-BC)分别组装成Li-S电池,在高载硫量(4 mg/cm2)下,具有PP隔膜的电池循环至100次放电比容量就已经衰减至600 mAh/g,而具有改性隔膜的电池循环300次后放电比容量高达735 mAh/g,对应每个循环的平均容量衰减率仅为0.07%,明显优于商用的PP隔膜。MXene相一般是通过选择性刻蚀MAX相获得层状过渡金属碳化物或氮化物,具有优异的导电性和丰富的官能团。Wu等提出了一种基于多孔细菌纤维素(PBC)的Ti3C2Tx-SnS2-PBC隔膜。一方面PBC具有高耐温性和抗穿刺性,提高了Li-S电池的安全性能;另一方面Ti3C2Tx-SnS2涂层可以通过路易斯酸碱作用捕获多硫化物,并通过催化活性位点促进氧化还原动力学。将Ti3C2Tx-SnS2-PBC隔膜组装成电池在0.2 C放电倍率下初始容量高达1390.9 mAh/g,循环500次后仍能保持862.1 mAh/g的放电容量,而PP膜组装成的电池循环500次后放电比容量仅为247.9 mAh/g,电池的容量保持率比PP隔膜高71.2%。
图13 p-BC和o-BC样品的Zeta电位
Wu等开发了一种具有“漏斗效应”的先进Li-S电池隔膜,在醋酸纤维素静电纺丝隔膜(CA)上原位聚合一层具有微孔结构的环糊精(β-CD)膜,并在膜的另一侧沉积一层碳作为上集流器。具有微孔结构的复合隔膜为抑制多硫化物穿梭提供了最佳的孔径(0.6~0.78 nm),并且微孔膜表面丰富的含氧极性基团可以化学吸附多硫化物,形成阻碍多硫化物的第二道屏障。将β-CD/CA/C、PP隔膜组装成电池,在0.2 C放电倍率下,具有PP隔膜的Li-S电池在600次循环后放电比容量仅为280 mAh/g,而具有β-CD/CA/C隔膜的Li-S电池初始放电容量为1378 mAh/g,经过1000次循环之后放电比容量高达863 mAh/g,是PP隔膜500次循环之后放电比容量的3倍以上。最主要的是,环糊精特有的截锥结构造成膜两侧产生不同的流体压力,导致在充电测试中(图14),具有β-CD膜的电池充电速率比普通PP隔膜的电池高65.3%。该隔膜的“漏斗效应”为Li-S电池快速充电提供了一种新型高效的解决方案。Li等发现纤维素纳米纤维中的异丙醇含量可以微调膜的孔隙结构,所以将纤维素纳米纤维(CNF)悬浮液与异丙醇水溶液混合搅拌,通过控制其中异丙醇与水的体积比调节CNF隔膜的孔结构,以实现最佳的电化学性能。将CNF膜组装成电池之后,在0.2 C放电倍率下,100次循环后放电比容量为589 mAh/g,相比具有PP隔膜的Li-S电池(100次循环之后放电比容量为459 mAh/g)有很大改善。如图15所示,通过DFT计算得出CNF隔膜中的含氧官能团也能对多硫化物具有一定的吸附能力,所以CNF隔膜良好的电化学性能不仅取决于CNF膜具有的微孔结构,还与含氧极性官能团吸附多硫化物有关。
图14 快速充电性能图
图15 DFT模拟Li2S6和CNF的相互作用
3 结论
本工作主要介绍了以聚烯烃隔膜和新型纤维素隔膜作为改性基体材料,不同抑制多硫化物穿梭的方法对Li-S电池充放电比容量、库仑效率、循环寿命的影响。基于传统的聚烯烃隔膜改性的功能性隔膜在不同的抑制策略下使Li-S电池表现出优异的电化学性能,为以后构建同时具有静电排斥、空间位阻、路易斯酸碱等作用的功能性隔膜奠定了基础。此外新型的纤维素隔膜表面丰富的羟基基团,可以通过化学方式修饰隔膜如酯化、氧化、醚化、接枝等,为隔膜的修饰开辟了一条新的途径。
虽然功能性隔膜研究取得了一定的成就,但是目前仍面临以下技术难题。第一,传统的聚烯烃隔膜活性位点较少,隔膜修饰只能通过物理涂覆实现,但额外的涂层不可避免地增加了隔膜的厚度,所以需要开发一种能够通过化学反应修饰传统聚烯烃隔膜的方法,来提高Li-S电池的能量密度。第二,虽然纤维素隔膜具有丰富的活性位点,可以通过化学反应修饰隔膜,但是其受制备工艺的影响,造成纤维与纤维之间的孔隙过大,无法实现对多硫化物和锂离子的有效筛分,所以通过化学改性优化纤维素隔膜孔隙结构是现在的主要研究方向。此外纤维素膜较差的力学性能,无法避免负极锂枝晶刺穿隔膜导致电池短路所带来的安全问题,所以需要利用纤维素表面多活性位点的特性将无机材料接枝在隔膜表面,提高纤维素隔膜的机械强度和对多硫化物的化学吸附性。第三,过渡金属元素对多硫化物的催化机理和影响因素还不明确,而这是能否准确控制Li-S电池隔膜化学改性效果的关键所在。第四,由于金属氧化物等常见极性材料导电性差,吸附的多硫化物很难有效地再利用,尤其在长循环过程中吸附的多硫化物附着在隔膜表面,无法被重新激活,导致硫的利用率降低,因此,急需开发同时具有高导电性和强多硫化物吸收性的先进隔膜涂层材料。对于以上问题的进一步探索将是推动Li-S电池商业发展的重要前提。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,4月18日,合山索英鑫能共模300MW/900MWh储能电站项目工程EPC总承包中标候选人公示。第一中标候选人为中建四局(雄安)建设有限公司、智城建科设计有限公司、重庆国网实业发展有限公司、广东信科机电工程有限公司联合体,投标报价130500.81303万元,折合单价1.450元/Wh;第二中标候选
4月18日,禄劝国有资本投资开发集团有限公司全资子公司昆明市禄劝健康产业投资有限公司发布禄劝共享储能项目(EPC+O)招标公告。本项目拟在云南省禄劝县建设200MW/400MWh共享储能项目,主要建设储能电站、220千伏升压站一座、储能仓用房、生活用房、水泵房、危废间及配套外送输电线路。约占地44.87亩。
新能源是中欧能源合作的突破口。文/罗佐县特朗普再次入主白宫后,加征关税成为其近期对外经济政策的核心。特朗普主导下,美国不仅对加拿大、墨西哥、中国产品加征关税,对欧盟关税加征也是近在咫尺的事情。慕安会上美国副总统万斯对欧洲进行了言辞激烈的批评,引发欧洲政坛强烈不满,欧盟对此作出了回
北极星电池网获悉,4月17日,2025年双鸭山市重点产业项目全面启动暨全钒液流电池储能全产业链示范基地项目开工仪式在双鸭山经开区黑龙江省全钒液流电池储能全产业链示范基地项目建设现场举行。黑龙江省全钒液流电池储能全产业链示范基地项目的开工建设,标志着双鸭山在钒产业发展上又迈出了具有里程碑
北极星储能网获悉,近日,山东省临沂沂河新区公示《临沂不啻微茫环保新材料有限公司年处理10,000吨废旧锂电池回收再利用项目》。据悉,临沂不啻微茫环保新材料有限公司(以下简称“临沂不啻微茫”)拟投资1.7亿元在临沂经济开发区循环经济园区内建设年处理10,000吨废旧锂电池回收再利用项目,主要建设
圆柱应用多点开花。全球圆柱电池市场正经历结构性变革,其核心驱动力首先来自技术进步和制造效率的提升。而随着圆柱电池制造商竞相布局从电动汽车到航空、人形机器人等多元化应用场景,一场围绕终端应用的争夺战已经打响,以上均预示着行业洗牌正在酝酿。大圆柱借力高端车型破局,制造效率与标准化优势
储能电池正在经历“分久必合、合久必分”的阵痛阶段。314Ah储能电芯在2023年一炮打响,结束了300Ah、310Ah、320Ah、345Ah等不同容量储能电芯的混战状态,成为280Ah之后行业公认的第二代储能电芯。从市场反馈来看,314Ah在2024年的出货量渗透率达到40%。GGII预测,2025年314Ah电芯的渗透率将超过70%。值
我们习惯把属于用户电力资产的部分称为表后,把归属于电网电力资产的部分称为表前。(来源:微信公众号“黄师傅说电”)在表前,也就是公共电网的范围内,电力市场每个交易周期出清交易结果,连接到这个大电网上的电源和负荷都会出清本周期的电量,同时也伴有该周期的价格。基于集中竞价,统一出清的方
电池平衡问题可能会导致您的电池资产停用数周,并使您无法每天达到额定容量,从而浪费您的时间、金钱和效率。在本文中,我们将解释不平衡的电池如何造成金钱损失,展示现代电池管理系统(BMS)如何出错,并向您展示如何使用Zitara进行持续平衡,让平衡问题成为过去。作者:DerekGuthei2024年1月15日什么
北极星储能网获悉,4月16日,国投奇台县180万千瓦风光氢储一体化项目储能系统设备采购中标候选人公示。第一中标候选人为合肥国轩高科动力能源有限公司,投标报价45990万元,折合单价0.46元/Wh;第二中标候选人问中车株洲电力机车研究所有限公司,投标报价42280万元,折合单价0.423元/Wh;第三中标候选
北极星储能网获悉,4月17日晚间,亿纬锂能发布2024年年度报告。报告显示,2024年,亿纬锂能实现营业总收入486.15亿元,同比下降0.3%;归属于上市公司股东的净利润为40.76亿元,同比上升0.6%;其中,扣除非经常性损益的净利润为31.62亿元,同比增长14.76%。亿纬锂能拟向全体股东每10股派发现金红利5元(
北极星储能网获悉,瑞泰新材3月22日在互动平台回复投资者称,在新型电池材料方面持续性地进行了相关研发与积累,在固态电池、锂硫电池以及钠离子电池等新型电池方面皆有相应布局。公司与国内外多家固态锂离子电池相关企业均有合作,公司生产的双三氟甲基磺酰亚胺锂(LiTFSI)已批量应用于固态锂离子电
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
正极材料竞争升级,锰、硫技术路线谁能突围?2025年,固态电池产业正在经历更为深刻的变革。固态电池技术的推进、规模化制造需求的提升,以及终端市场对高性能电池的需求不断增长,共同驱动着以锰系、硫系为代表的新型正极材料体系加速成型,传统锂电池正极材料体系迎来重大革新。当前,9系高镍三元材
北极星储能网获悉,近日一则报道引起讨论,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池,该项研究成果已于1月16日发表在国际学术期刊《自然》,固态电池又迎来一轮热度。据统计,2025年以来,
据了解,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。16日,相关研究成果在国际学术期刊《自然》上发表。
北极星储能网获悉,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。该项研究成果已于1月16日发表在国际学术
北极星储能网获悉,12月2日,全球第四大车企Stellantis集团官微宣布,董事长接受了唐唯实(CarlosTavares)辞去其Stellantis集团首席执行官职务的请求,该辞呈立即生效。据悉,唐唯实曾先后在雷诺、日产、标致雪铁龙等多家知名车企任职。2013年,唐唯实在掌管PSA集团期间,主导了PSA(标致雪铁龙集团)和
北极星储能网获悉,8月28日,中国科学院青岛生物能源与过程研究所发布全固态电池高容量正极材料取得重要进展。资料显示,硫化物全固态电池具有高能量密度、快速充放电、低温性能优异以及高安全性、长寿命等优点,解决了液态锂电池能量密度低、易燃易爆等一系列问题,展现了其在电动汽车和其他领域的应
5月29日,中国能建2024年电化学储能产业发展论坛暨储能新产品发布会在武汉成功举办。本次论坛由中国能源建设集团有限公司(简称“中国能建”)主办,由中国能建集团装备有限公司(简称“中能装备”)、中能建储能科技(武汉)有限公司(简称“中储科技”)承办。来自业内专家学者和集团内部先进企业的
天力锂能4月16日在投资者互动平台表示,公司2023年研发投入占比接近往年水平,暂未研发锂硫电池。
2023年是国内锂电池产业链企业走向海外的一年。随着中国企业全球化落子提速,电动汽车市场减速的背景下,2024年将是全球新能源产业链争霸白热化的一年,中韩两国电池之争“厮杀正酣”。(本文来源:微信公众号起点锂电ID:weixin-lddsj作者:张清辉)2023年,中企拉大了与韩企的差距,前者市占率已突破
随着可再生能源发电设施的加速布局,储能市场正迎来快速发展的新阶段。江苏省积极响应政策导向,鼓励企业用户和产业园区自主建设新型储能设施,通过峰谷分时电价等市场化机制有效缓解电网高峰供电压力。同时,江苏省支持企业用户建设“微电网+储能”系统,推动新型储能技术在分布式能源、需求响应等领
企查查APP显示,4月11日,明阳天成智慧能源科技(上海)有限公司成立,法定代表人为张瑞,注册资本500万元,经营范围包含:新兴能源技术研发;新材料技术研发;机械电气设备销售;储能技术服务;风力发电技术服务等。企查查股权穿透显示,该公司由明阳智能全资持股。
近日,又一则利好消息从宁德时代传出。宁德时代昨日宣布,公司与金华市交通投资集团于4月18日签署了战略合作协议。双方将以加快实现产业零碳发展为总目标,围绕零碳陆港、新能源公交车、物流仓储服务、重卡电动化及换电业务等方面的合作,共同构建零碳能源补给生态链。双方合作主要围绕三大方向展开:
北极星储能网获悉,4月9日,宜宾这座能源之城、动力之都,又迎大事、喜事——2025宜宾储能产业高质量发展大会召开,在多方推动下,在包括众多央企在内的各方企业家代表大力支持下,会上签约8个储能产业合作项目,签约总金额28.7亿元。会后,2025宜宾市新能源应用场景暨储能产业园重点项目集中开工,现
2023年以来,随着政策驱动、技术进步以及市场需求的多重推动,工商业储能市场呈爆发式增长,2025年继续保持上升态势。本文对2025年一季度国内工商业储能市场装机情况、招投标价格、备案情况、产能布局以及产品创新趋势等进行了梳理。Q1装机容量同比+54.85%据CESA储能应用分会产业数据库不完全统计,2025
4月15日,哈萨克斯坦2025年可再生能源项目招投标首轮竞拍举行,寰泰能源成功中标1GW风电项目及600MWh配套储能系统,进一步稳固公司在中亚新能源市场的领先地位。此次竞拍由哈萨克斯坦能源部组织举办,是哈萨克斯坦首次推出“风电+储能”一体化项目竞标,共释放1个总装机容量为1GW的风电项目及配套储能
4月18日,中国贵州茅台酒厂(集团)有限责任公司(简称“茅台集团”)与宁德时代新能源科技股份有限公司(简称“宁德时代”)于贵州仁怀签署战略合作协议。双方的此次合作,以“重塑产业价值,定义全球绿色工业新标准”为愿景,深度融合新能源技术创新与传统工业生态智慧、实体经济与绿色科技,共同促
近日,中电建南方、华东新华、青岛城投、广东建晟、水发绿色多个新能源岗位招聘,北极星整理如下:中电建新能源集团股份有限公司(简称:电建新能源集团)成立于2021年12月,是大型央企中国电力建设股份有限公司(简称:中国电建)的重要子企业,主要从事以新能源为主的清洁低碳能源项目的投资开发和运
2024全年,内蒙古中西部地区新型储能累计充电量8亿千瓦时、放电量6.6亿千瓦时。而2025年一季度,新型储能累计充电量达6.2亿千瓦时、放电量5.3亿千瓦时,转换效率达85.4%,实现了新突破。近日,在自治区储能企业座谈会上,9家企业共话储能产业发展新商机。会上,内蒙古电力集团围绕贯彻落实自治区关于储
近期,国内外多个构网型储能电站陆续并网,令构网型技术再次高调进入公众视野。南瑞继保作为业内构网型储能的定义者,凭借深厚技术沉淀与不懈的创新精神连续突破,为新能源的高效利用与电网的稳定运行保驾护航,引领行业迈向新的发展高度。在2025年4月10-12日举行的第十三届储能国际峰会暨展览会(ESIE
4月11日,在第十三届储能国际峰会暨展览会(ESIE2025)现场,海博思创5MWh-AC储能系统产品,获得由权威机构TÜV莱茵颁发的欧美澳全系列认证证书,这标志着海博思创的5MWh-AC产品成功通过了欧洲、北美、澳洲的产品检测认证,该产品在电气安全、功能性能、环境适应性与电网兼容性等核心维度全面满足国际
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!