来源:珠海市工业和信息化局2025-03-20
突破界面电阻高、电导率低、稳定性不足等固态电池技术瓶颈,支持攻关固固界面导电机理、固态电池内部串联高效集成等固态电池核心问题,攻关固态电池低成本规模化生产关键工艺,发展高比能、高安全、长寿命的固态电池体系
来源:高工锂电2024-10-29
硫化物电解质则具有较高的离子电导率和较低的界面电阻,但材料不稳定性、界面问题、制备工艺复杂、成本高等多重因素,阻碍其规模化量产。
来源:NE时代新能源2024-09-13
负极界面,除了锂枝晶生长问题,界面形貌演变、电解质分解和化学-机械衰退,均会导致高界面电阻和电池失效。...02.固固界面及锂枝晶问题固态电解质与电极界面接触较差、负极侧锂枝晶生长的问题,以及硫化物固态电池工作期间需要几十到几百兆帕压强保持界面良好接触,均限制其性能的发挥及提升。
来源:高工锂电2024-06-03
三种技术路线中,氧化物电解质具有较高的离子电导率和稳定性,但界面电阻较大;硫化物电解质则具有较高的离子电导率和较低的界面电阻,但稳定性相对较差;聚合物电解质则具有较好的柔韧性和加工性,但离子电导率较低。
来源:上海硅酸盐研究所2023-01-31
基于氟化电解质的锂金属对称电池在长期老化和循环过程中均表现出较小的界面电阻和过电位(在0.1 ma/cm2、0.2 ma/cm2、0.4 ma/cm2时分别为25 mv、50 mv和75 mv)。...氟化增强使得聚合物电解质与金属锂接触的界面极为稳定,有益调节了锂负极表面的固体电解质界面(sei)组分,诱发了具有优良导电性的li2o的富集,同时,削弱了li2co3钝化组分,抑制了界面钝化。
来源:北极星储能网2022-03-27
氧化物全固态(电池),电解质陶瓷片容易脆裂,界面电阻高,大容量电芯很难制备。...中科院青岛能源所的崔光磊团队开发了硫化物电解质和pegmea(聚乙二醇甲基醚丙烯酸酯)复合的原位聚合的固态电解质,具有比较高的离子电导率,而且具有比较低的界面电阻,相当程度上解决了界面在循环过程中接触不好的问题
来源:盖世汽车资讯2022-03-22
重要的是,离子液体可以填充阴极/固体电解质界面处的任何微小空隙。随着空隙被填充,界面电阻显著降低。离子液体不仅具有离子导电性,而且几乎不挥发且通常不易燃。...每侧的表面粗糙度都会导致高界面电阻,从而影响电池性能。目前已有一些研究着眼于固体电解质的设计,但阴极设计仍然是一个悬而未决的问题。
来源:盖世汽车资讯2022-03-11
据介绍,通过这种方法制造的电极和电解质界面,其性能可与以往文献报道过的最佳界面电阻相媲美。以往的研究需要通过额外的涂层步骤来实现,相比之下,这种方法可以减少额外制造过程,避免高昂的费用。...之所以需要进行烧结,是因为将陶瓷层简单地压在一起,层体之间的接触很不理想,间隙太多,界面之间的电阻很高。
来源:粉体网2020-08-10
目前,国内外正极材料厂家主要采用共沉淀-高温固相法来制备正极材料,但其二次颗粒随着电池充放电次数增加,尤其在高电压下,一次粒子之间的界面极易产生微裂纹或粉化,提高了界面电阻,极化增大,二次球形颗粒内部孔隙多
来源:汽车杂志LIVE2019-11-06
这就导致电极与固体电解质之间的接触面积小,同时界面电阻非常高,影响到离子传导率,因此能量密度优势在电芯层面相对不够明显,如果说未来不能达到一定规模,降低成本,那么氢燃料电池将会成为车企们另外的选择。
来源:NE时代2019-09-19
这就导致电极与固体电解质之间的接触面积小,同时界面电阻非常高,影响到离子传导率。
来源:福建物质结构研究所2019-09-05
但是中空碳材料大多都是孤立的,这增加了材料的界面电阻,并且堆积的松散性也降低了电池的体积能量密度。发展相互连接的中空结构杂原子掺杂的碳材料作为硫主体材料对于提高锂硫电池的性能具有重要意义。...这种结构能够减小材料的界面电阻,增强对多硫化物的吸附能力,提高活性物质的利用率,使得电池在8@imip2 c的倍率下稳定循环800圈以后,仍能达到562 ma h g-1的比容量,电化学性能明显优于传统杂原子掺杂的碳材料
来源:起点锂电大数据2019-08-14
宁德时代宁德时代以硫化物电解质为主要研发方向,采用正极包覆解决正极材料与固态电解质的界面反应问题,采用热压的方式增强了电解质和电极材料之间的接触,降低了界面电阻,通过对硫化物进行改性,增强了其热稳定性。
来源:材料人2019-08-12
电池内阻包括以下几个方面:纤维电极的导电性、电解质与电极之间的界面电阻和电解质的离子导电性。 2. 制造困难与平面电池相比,纤维状电池的制造工艺要求更为严格和复杂。...据报道,大多数纤维状的器件都是厘米级的,很少有报道提到它们的电阻。然而,随着电池纤维长度的增加,尤其是当放大纤维在变形状态下工作时,电阻越高对电化学性能的不利影响越明显。
来源:锂想生活2019-08-07
电池极片的电解液浸润对性能影响很大,电解液浸润效果不好时,离子传输路径变远,阻碍了锂离子在正负极之间的穿梭,未接触电解液的极片无法参与电池电化学反应,同时电池界面电阻增大,影响锂电池的倍率性能、放电容量和使用寿命
来源:起点锂电大数据2019-02-25
来源:清新电源2019-02-12
由图(d)、(g),100℃下,li / llzo/ cu电池和li / li3ps4/ pt电池电压为负值,且电压急剧下降,但并未恢复到0v附近,说明没有发生短路,可能是由于锂和固态电解质接触减少,界面电阻剧增
来源:材料牛2019-01-04
2.3、电解质—电极界面的锂离子传输电解质和电极之间的高界面电阻对电池的整体性能具有显著的影响,阻碍了asslbs发展。...等先进电池的锂电池从常规libs到asslibs的发展趋势示意图2、锂电池的固态电解质2.1、固态电解质(sse)在实际应用中存在以下的问题:(1)sse的低离子电导率,特别是在低温下;(2)电极—电解质的固固界面处的界面电阻大
来源:中国科学报2018-12-21
刘巍告诉《中国科学报》,目前,较高的界面电阻是制约全固态锂电池商业化的主要原因,减小界面电阻的方式包括添加缓冲层以及人工钝化层、在电极中混入固体电解质材料等。全固态锂电池的商用仍待研究,但未来可期。
来源:科学网2018-12-20
目前,较高的界面电阻是制约全固态锂电池商业化的主要原因,减小界面电阻的方式包括添加缓冲层以及人工钝化层、在电极中混入固体电解质材料等。全固态锂电池的商用仍待研究,但未来可期。刘巍对《中国科学报》表示。