北极星

搜索历史清空

  • 水处理
您的位置:电力风电海上风电技术正文

干货 | 海上漂浮式风机关键技术研究进展

2020-07-21 09:24来源:南方能源建设作者:陈嘉豪 裴爱国 马兆荣 庞程燕关键词:漂浮式风电海上风电风电技术收藏点赞

投稿

我要投稿

1.5 一体化计算

在作业过程中,浮式风机承受复杂的环境载荷,且与基础运动、结构振动以及控制系统高度耦合,这表明其数值仿真需要进行高精度的一体化计算。其数值计算方法也从早期的线性频域分析发展到如今的非线性时域分析。也因此越来越多的学者致力于开发适用于海上漂浮式风机的时域数值仿真程序。例如,Withee[40]将广泛运用于航空航天和机械工业的通用多体仿真计算软件ADAMS和气动力、水动力和锚链子程序通过动态链接库技术在时域上进行耦合计算,模拟海上浮式风机时域动力响应行为。相似地,Matha[41]使用通用多体仿真计算程序SIMPACK,并结合气动子程序AeroDyn、水动力子程序HydroDyn和自主开发的锚链子程序,在时域上对海上浮式风机的动力特性进行了研究与分析。Jonkman[42]重新改写了固定式水平轴风机计算程序FAST,并加入自主开发的水动力和锚链子程序,使得FAST软件具有计算海上浮式风机的能力,如图8所示。国内的Chen等人自主开发了海上浮式风机一体化数值仿真程序DARwind[43]。类似的浮式风机计算软件,还有GH Bladed、HAWC2、SIMA等[44]。

为了验证海上浮式风机一体化仿真程序的准确性,IEA资助了著名的OC3 (Offshore Code Comparison Collaboration)项目[45],OC4 (Offshore Code Comparison Collaboration Continuation) 项目[46]以及OC5(Offshore Code Comparison,Collaboration, Continued,with Correlation)项目[47]。这些项目的开展,有力地推动了海上漂浮式风机一体化数值计算理论和相关数值程序的发展。

8.jpg

图8 FAST程序流程[42]

1.6 模型试验研究

与数值计算相比,海上漂浮式风机模型试验往往能够更加真实地反映浮式风机在复杂海洋环境下的动力响应行为。通常而言,缩尺比模型和实体之间至少需要满足以下三个相似条件:几何相似、运动相似和动力相似。然而,依据现有的技术和设备条件,完全满足所有的相似条件是不切实际的,因此需要抓住主要特性,合理选择以达到预期的试验目的。目前,海上漂浮式风机进行模型试验时需要满足的相似准则主要有:(1)几何相似:物体的形状特征反映物体基本的力学特征。主要为试验对象和环境的线性尺度参数,如长宽高、吃水深度、重心高度等;(2)傅汝德数相似(Froude): 表征为流体内的惯性力和重力的比率。由于波浪载荷对于浮体运动的影响比粘性水动力载荷影响更加明显,因此需要考虑波浪力的准确模拟;(3)斯特劳哈尔(Strouhal)数相似:浮体在波浪上的运动和受力以及风轮的旋转运动带有周期变化性质,因此需要保证周期性特性不变;(3)雷诺数(Re)相似:风机气动试验侧重于雷诺数相似,即流体内惯性力与粘性力的比率相似,以正确模拟桨叶的气动力和气体流动状态为主。

Fowler等人[48]发现模型桨翼的流体流动状态将会从原尺度的湍流状态变成模型尺度的层流状态,导致模型桨叶功率系数和推力系数降低。因此,浮式风机的模型试验的难点始终围绕着模型的气动性能的改善问题,以尽可能与原型匹配。早期,一些模型试验采用圆盘等效风轮,主要以气动推力的模拟为主,但这种方法忽略了风轮系统的扭矩、陀螺力矩等气动特性。代表性试验如2010年Principle Power公司开展的WindFloat浮式风机模型试验[49],如图9(a)所示。后来,一些模型试验放弃了风速相似的限制条件,通过调整风速匹配模型的气动载荷,但是该方法无法保证非旋转体,如水面以上的平台和塔筒的气动载荷和流场状态相似,代表性试验如2011年至2012年,在OC4项目资助下,美国缅因州大学在荷兰MARIN水池开展的三种浮式风机模型试验[50],如图9(b)所示。后来,该项目组放弃了桨叶的几何相似,重新设计了适应低雷诺数模型环境的桨叶翼型。国内的Duan[51]和Chen[52]等人也进行了类似的试验。虽然上述改变桨叶翼型的方法提高了模型桨叶在低雷诺数模型环境下的气动性能,但整体的质量分布发生了改变,因此改变了原设计的浮式风机的质心和惯性矩特性。

9.jpg

图9 浮式风机模型实验

(a) WindFloat试验[48],(b) MARIN试验[49]

为了修正浮式风机模型试验中雷诺数不相似导致的气动特性差异而又不影响原设计模型的质量分布特性。Thomas Sauder等人[53]对无桁架的半潜型浮式风机Semi-submersible 5MW-CSC 浮式风机开展了实时混合模型试验(ReaTHMTM testing)。在该实验中,浮式风机的风轮、机舱和伺服系统均采用数值仿真的方式,其余结构,如平台、系泊系统、塔筒等以缩尺比物理模型(1:30)进行水池试验。数值模型和物理模型通过传感器、通信网络和执行器等进行实时的交互。整个试验的原理过程如图10所示。上述的实时混合模型试验较好地解决了海上漂浮式风机质量控制困难、气动特性模拟困难等问题,但是上述试验方法仍具有一定缺陷,如:来流风场是通过数值程序生成的,采用了简化的理论计算方法,缺乏全风场信息、气动载荷计算采用AeroDyn数值程序,计算原理是BEM和GDW方法,计算精度可能不足,整个试验过程的数据采集、传输和数值模拟均具有一定的时间延迟误差等。

10.png

图10 实时混合模型试验[53]

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

漂浮式风电查看更多>海上风电查看更多>风电技术查看更多>