北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻储能储能材料市场正文

超级电容器电极材料研究进展

2016-06-15 15:02来源:中国新能源网关键词:超级电容器电极材料碳材料收藏点赞

投稿

我要投稿

3金属氧化物电极

金属氧化物作为超级电容器电极材料的研究是由Conway在1975年研究法拉第准电容储能原理开始的。这类电极材料组成的电容器主要是通过在电极表面或体相中的二维或准二维空间发生高可逆的氧化还原反应产生的法拉第准电容来实现能量存储的,其电容量远大于活性炭材料的双电层电容,有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下几个方面进行:(1)制备高比表面积的RuO2活性物质;(2)RuO2与其他金属氧化物复合;(3)开发其他新材料。

3.1高比表面超细微RuO2电极材料

超细微RuO2电极活性物质以其优异的催化活性在卤碱工业中的应用已为人们所知,但作为超级电容器电极材料仅仅是近年来的事。RuO2电极的导电性比碳电极好,电导率比碳大两个数量级,在H2SO4电解液中的稳定性高,可获得较高的比能量,目前的研究工作主要集中在进一步提高其比表面积及利用率上。

J.P.Zheng和T.R.Jow采用溶胶凝胶法制备了无定型水合RuO2电极材料,所得电极比电容达720F/g,比以往报道的同类物质的比电容高两倍。这种超细微RuO2粉体在175℃热处理后制成的电极其单电极的比容量高达760F/g,且在-51~73℃可连续充放电60000次以上。Zheng等分析认为,在无定型水合氧化钌中H+很容易在体相中传输,不仅颗粒外层的Ru4+和H+作用,体相中的Ru4+也能与H+作用,从而大大提高了电极的比电容。而晶体结构RuO2做电极时,电解液不易进入电极材料内部,只在材料的表面发生反应,所以虽然晶体结构RuO2的比表面积大,但实际比容量却比其无定型水合物小得多,由此可见,无定型态结构比晶体结构RuO2更适合做超级电容器电极材料。

虽然晶体结构RuO2及其无定型水合物表现出了良好的电容特性,但Ru是一种贵金属,其价格十分昂贵,大规模的应用尚不能实现,因此人们正在力图寻找RuO2的替代材料或提高其利用率。

3.2 RuO2复合电极材料

近年来,日本新宿大学以Yoshio Takasu为首的研究者用sol-gel方法先后制备了RuO2与MoOx的混合物、与VOx的混合物、与TiO2的混合物、与SnO2的混合物等活性物质。

M.Wohlfahrt-Mehrens等[11]对钙钛矿型的钌化物 (如SrRuO3)进行了研究,发现其准电容可以通过改善合成条件以及其他金属离子在A位或B位的取代得以提高。当20mol%的Sr被La取代后比电容增加,Mn在B位上以20mol%取代Ru,在没有减小电位窗的同时提高了电容量,另外通过优化组分和工艺路线,比电容可达270F/g。Hansung Kim等[12]在活性 炭上沉积无定型纳米RuO2,当Ru的质量百分比达到40%时电极容量为407F/g,除去混合物中活性炭的双电层影响,RuO2・xH2O的比电容达到863F/g,沉积在碳上的RuO2・xH2O颗粒直径大约在3nm左右,比能量17.6Wh/kg,比功率4000W/kg。

3.3 其他金属氧化物

研究发现,Ni、Co、Mn、V、W、Pb、Mo等的 氧化物有超电容特性,可作为电极材料。Anderson等人[13]分别用溶胶-凝胶法和电化学沉积法制备了MnO2电极材料,发现用溶胶-凝胶法制备的MnO2比容量比后者高出1/3之多,达到了698F/g(在0.1mol/L的Na2SO4电解液中),且循环1500次后容量衰减不到10%,比容量仅次于RuO2・xH2O。Anderson等人认为MnO2电极高比容量是基于法拉第准电容,从MnO2到MnOOH的理论容量为1100F/g,而目前试验值只有其理论值的60%,对于溶胶-凝胶法制备的电极容量高于电化学沉积的解释为前者得到的MnO2是纳米级的,而电化学沉积所得到的是微米级的,纳米级的比微米级的具有更高的比表面积,质子更容易进入纳米MnO2体内,增大了材料与电解液的接触机会,从而提高了材料的利用率。张宝宏等[14]用固相合成法制备纳米MnO2作为超级电容器材料,测试表明,在1M KOH电解液中电极在-0.1~0.6V的电压范围内有良好的法拉第准电容性能,在不同电流密度下,电极比容量达240.25~325.21F/g,恒电流充放电5000次容量衰减小于10%。

原标题:超级电容器电极材料研究进展
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>电极材料查看更多>碳材料查看更多>