北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻储能储能材料市场正文

超级电容器电极材料研究进展

2016-06-15 15:02来源:中国新能源网关键词:超级电容器电极材料碳材料收藏点赞

投稿

我要投稿

Nae-Lih Wu[15]合成的Fe3O4-SnO2复合电极在1M Na2SO4和电压扫描速率50mV/s条件下电容为33F/g(约130F/cm3),电极材料的结晶化增加了其填充密度,提高了空间充电容量。N.L.Wu等[16]发现SnO2干凝胶在500℃下处理时,质量比电容随温度增加而增加,但超过500℃后,随比表面积的降低而降低。全结晶的SnO2干凝胶与半导体的空间放电模型类似,在空气和真空(0.1Torr)中煅烧,其平均比电容分别为8和16μF/cm2,在此干凝胶上掺RuO2颗粒制成复合电极,在1M KOH电解液中,RuO2的比电容达到670F/g。另外人们还研究了其他金属氧化物电极,如Han-Joo Kim[17]采用溶胶凝胶法制备的超细Co2O3电极活性物质,单电极比电容分别达400F/g。Winny Dong等[18]采用凝胶法制得的V2O5干凝胶比电容达960~2000F/g。

4导电聚合物

导电聚合物电极电容器是通过导电聚合物在充放电过程中的氧化还原反应,在聚合物膜上快速产生n型或p型掺杂从而使其储存很高密度的电荷,产生很大的法拉第电容。研究发现聚吡咯(Polypyrroles, PPY)、聚噻吩(Polythiophenes, PTH)、聚苯胺(Polyaniline, PAN)、聚对苯(Polyparaphenylene, PPP)、聚并苯(Polyacenes, PAS)等可用作超级电容器电极材料。

聚合物超级电容器结构有3类:(1)一个电极是n型掺杂,另一个是p型掺杂;(2)两个电极是两种p型掺杂;(3)两个电极是相同的p型掺杂。其中(1)结构充电时两个电极都被掺杂,电导率高,掺杂时可充分利用电解液中阴离子和阳离子进行n/p型掺杂,因而电容器电极电压较高,电荷可完全释放,储能高。

C.Arbizzani等[19]把制备的聚3-甲基噻吩(pMeT)n/p型掺杂的超级电容器和混合电容(阳极是P型掺杂的pMeT,阴极是活性炭)与双电层电容性能的比较,n/p型掺杂的超级电容器由于其较低的放电容量,还未能完全超越双电层电容,但由于其有较高的放电电位,所以能满足高电压领域的要求,而混合电容由于其平均比功率和最大比功率以及在1.0V以上有较高的比能量,其性能超越了双电层电容。同时,pMeT还有较高的性价比。聚1,5-二氨基蒽醌(PDAA)作为电极材料,由于其分子链上醌基和共轭体系的贡献,其工作电位范围为-1.5~1.0V,用PDAA作为电极材料制备的电化学电容器表现出较高的比能量(25~46Wh/kg)和较高的比功率[20]。

虽然导电聚合物超级电容器具有可快速高效放电、不需要充放电控制电路、使用寿命长、温度范围宽、不污染环境等特点,但真正商业应用的电极材料品种还不多,价格也较高。今后重点应放在合成新材料,寻找具有优良掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。

5结语

由于优异的高功率连续充放电性能及宽使用温度范围等特性,超级电容器早已引起了世界各发达国家和国际性大公司的重视,日本设立了新电容器研究会,美国成立了Supercapacitor Symposium,并对全密封电容器制定了发展目标,近期目标为:比功率500W/kg,比能量2.5Wh/kg;远期目标为:比功率1500W/kg,比能量15Wh/kg。仅就实用而言,碳材料无疑是目前超级电容器各类电极材料中最具吸引力的,导电聚合物、金属氧化物等作为电极材料处于探索之中。今后超级电容器电极材料的研究重点将集中在已有材料制备工艺及结构优化,兼具法拉第准电容和双电层电容新材料的开发,高性能材料的规模化生产,以适应市场对高性能、低成本、性能稳定移动电源技术的需求。

参考文献:

[1]KÖtz R, Carlen M.[J]. Electrochemica Acta,2000, 45: 2483- 2498.

[2]王晓峰, 孔祥华, 刘庆国,等 新型化学储能器件—电化学电容.[J]. 学世界2001, 25(2): 103-108.

[3]Osaka T, Liu X J, Nojima M.[J]. J. Electrochem. Soc., 1999, 146(5): 1724- 1729.

[4]Wu N L, Wang S Y.[J]. J. Power Sources, 2002, 110: 233-236.

[5]Wencui Li, G.Reichenauer, J. Fricke.[J]. Carbon, 2002 (40): 2955-2959.

原标题:超级电容器电极材料研究进展
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>电极材料查看更多>碳材料查看更多>