北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能材料市场正文

超级电容器纳米氧化锰电极材料的合成与表征

2016-09-22 08:47来源:中国新能源网关键词:超级电容器电极材料纳米氧化锰收藏点赞

投稿

我要投稿

2.4样品的BET比表面积和孔径分析

添加了分散剂制得的氧化锰粉体的BET比表面积为160.7m2/g。材料的孔径分布见图6,根据国际纯粹与应用化学学会(IUPAC)将孔径分为微孔(<2nm),中孔(2~50nm)和大孔(>50nm)3个范围。由图6可以看出,1~2nm的孔径占31%,其次5~10nm孔径占23%,3~4nm孔径占12%.这种适宜的孔径分布对电容大小的影响至关重要[15]。

这是因为若孔径太大,相应的比表面积必将缩小,电解质离子只与活性物质的外表面接触,活性物质的利用率较低,最后将导致包括双电层电容在内的总电容都缩小。反之,若孔径太小,也很难产生电容。对超级电容器而言,当材料的孔径小于水合离子的半径0.6~0.76nm时,电解质离子很难进入到孔中,这些微孔对BET比表面积有贡献,但对总电容起不到贡献作用,也导致电解质离子与活性物质的接触减少,活性物质的利用率降低,从而使电容量减少。因此制备的材料大于1nm的微孔和中孔应尽可能多。

2.5电化学性能测试

图7为未加分散剂和加入分散剂制备的氧化锰电极的循环伏安图。由图7可知,氧化锰电极在1mol/L的Na2SO4溶液中,在-0.2~0.9V(vs.SCE)电位窗口范围内具有较好的方型特征,阴极过程和阳极过程基本上对称,这表明该电极电容器以恒定速度进行充放电,同时,也说明电极和电解液之间的电荷交换以恒定的速率进行,显示了氧化锰电极具有较好的电容特性。在0.6~0.85V之间有一个小的凹区,这与文献[16]中报道的结果相一致。同时可以看出,加入分散剂的氧化锰电极比未加分散剂的氧化锰电极表现出更好的电流响应特性,这可能与SEM电镜观察的加入分散剂氧化锰的粒径较小有关。

以及文献[6]报道的利用CV曲线计算比容量的方法,计算出电极的比容量。未加入分散剂制得的氧化锰#0在1mol/L的Na2SO4溶液中的比容量为155.6F/g.加入分散剂制得的氧化锰#1在1mol/L的Na2SO4溶液中的比容量为203.4F/g,大于文献[16]中报道的166F/g的比容量。这可能是由于制备的纳米氧化锰具有更小的粒径,使氧化锰具有较大的比表面积,一次粒子的团聚,形成二次粒子,也形成合理的孔径分布,有利于质子的嵌入和脱嵌,使得活性物质氧化锰的利用率大大提高;另外,制备的纳米氧化锰具有无定型结构,便于质子进出粒子的内部,产生快速、可逆的化学吸附/脱附或氧化/还原反应,从而产生更高的赝电容,导致高的比电容。这种情况类似于无定型RuO2˙nH2O在H2SO4体系产生赝电容的机理[3]。

因此,制备的无定型纳米氧化锰是理想的超级电容器电极材料

原标题:超级电容器纳米氧化锰电极材料的合成与表征
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>电极材料查看更多>纳米氧化锰查看更多>