北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池市场正文

SEI膜被拉下神坛 谁将引领未来电解液设计?

2018-01-08 10:55来源:新能源Leader作者:凭栏眺关键词:锂离子电池SEI膜电池电解液收藏点赞

投稿

我要投稿

那么究竟是什么原因导致高浓度的LiTFSI电解液能够显著改善石墨负极的稳定性呢?为此,JunMing分别配置了不同LiTFSI浓度和配方的电解液进行了实验,结果如下图所示。从下图d中可以看到,随着LiTFSI浓度的提高(从1M到10M),电解液的稳定性有了显著的提升(10M浓度电解液性能下降主要是因为浓度过高,导致粘度上升和离子迁移困难),并且在电解液中加入LiNO3能够进一步提升电解液的稳定性。采用XRD研究显示,在浓度较高的2.5M/0.4M电解液中石墨能够可逆的嵌入和脱出Li+,但是在浓度较低的1.0M/0.4M电解液中,由于石墨在溶剂共嵌入的作用下发生了分层剥落,导致Li+的嵌入不可逆。

为了研究上述现象的产生机理,JunMing利用拉曼光谱对电解液的溶液结构进行了研究,研究显示在电解液中的TFSI-离子根据与Li+相互作用的强度存在几种不同的存在形式:自由离子FI,松散离子对LIP,紧密离子对IIP和聚合离子对AIP。实验数据显示:1)在较低的浓度下,TFSI-的主要存在形式为FI或LIP,当提升锂盐浓度时,TFSI-会向LIP和IIP转变;2)相比于DOL,DME能够更好的溶解锂盐,使得TFSI-更多的以FI的形式存在;3)NO3-能够显著的增强Li+-TFSI-之间的相互作用。

一般而言,我们认为Li+溶解后会形成一个溶剂化的外壳,这个外壳即包含阴离子,也包含溶剂分子。JunMing利用密度函数理论对分子动力学进行了模拟,得出了溶剂化外壳的结构如上图所示。模型中Li+与TFSI-中的O具有强烈的相互作用,在溶液中添加NO3-后,NO3-能够取代溶剂化外壳中的TFSI-(上图e)或者取代溶剂分子(上图f),从而达到弱化Li+-溶剂之间相互作用的效果。同时上面的研究也表明溶剂化外壳的结构,不一定需要保持电中性,例如上图e和图f就呈现电负性结构,能够进一步与Li+相互作用,形成更大的结构,从而进一步弱化Li+-溶剂的作用力。

异构有序度参数HOP数据也证明了上述计算结果,一般而言有序度参数越大说明Li+-溶剂之间的相互作用也就越强,JunMing发现,1.0M/0.4M的溶液的有序度参数为3.6,当提升锂盐浓度到2.5M/0.4M后,有序度参数下降到了1.8,表明提升锂盐浓度能够有效的降低Li+-溶剂相互作用。不添加LiNO3的2.5M/0M电解液的有序度参数为4.7,远高于添加LiNO3的1M/0.4M电解液,表明NO3-能够有效的降低Li+-溶剂相互作用。

JunMing的研究让我们在电解液开发中开辟了一个全新的思路——降低Li+-溶剂相互作用,减少溶剂共嵌入,提升石墨负极的循环性能。降低Li+-溶剂相互作用可以通过提高锂盐的浓度,采用溶解能力较弱的DOL溶剂体系,向电解液中添加无机盐(如LiNO3或者NaNO3等)的手段实现,从而显著的减少溶剂共嵌入的现象,这为未来电解液设计,特别是S正极电池电解液的设计提供了一个全新的思路,对推动S正极电池的应用具有重要的意义。

原标题:SEI膜被拉下神坛,谁将引领未来电解液设计?
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

锂离子电池查看更多>SEI膜查看更多>电池电解液查看更多>