北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻技术正文

导电聚合物超级电容器电极材料

2016-06-22 08:49来源:中国新能源网关键词:超级电容器电极材料导电聚合物收藏点赞

投稿

我要投稿

Chen等[58]通过水热法制备了PEDOT-多壁碳纳米管复合电极材料,先利用PSS(聚苯乙烯磺酸)对碳纳米管进行适当的处理然后进行复合,PSS的出现使得PEDOT能在碳纳米管上形成均匀的膜,使所形成的复合物能形成协同互补效应的核-壳结构;在0.5mol/LH2SO4溶液进行测试,两种组分配比为1∶1时比容量最高达198.2F/g,且2000次充放电测试后比容量衰减约26.9%,该复合物电极比容量虽不是很高但是所得到的特殊核-壳结构为制备电极材料开辟了新方向。

利用导电聚合物与多孔碳材料、碳纳米管复合制备的电极材料,其电容性能均比单一材料要好且综合性能优越,该方法为超级电容器电极材料的制备提供了很好的方向。

聚合物不仅能与碳材料复合得到效果较好的电极材料,与金属氧化物复合也能得到效果很好的电极材料。Sun等[59]通过电化学聚合制备了聚苯胺、聚苯胺-MnOx电极材料(式1为氧化锰的充放电过程),并在1mol/LNaNO3溶液中分别表征了两种电极的电容性能:单纯聚苯胺为408F/g,而聚苯胺-MnOx电极材料的比容量达588F/g(比单纯的聚苯胺电极比容量提高约44%);经过连续1000次充放电后复合电极的比容量仍然保持90%(相对于初始比容量),其库仑效率也高达98%,测试电极质量增加对比容量没有大的影响。

Hu等[60]制备了聚苯胺-SnO2复合电极,先通过溶胶-凝胶制备了直径为20—60nm的SnO2颗粒,然后经化学氧化聚合制备复合电极;经过对复合电极结构的分析得到SnO2嵌入到聚苯胺的网状主链上,增加了电极接触界面的孔隙率;在1mol/LH2SO4溶液中分别测试纯SnO2电极和复合电极的电容性能,复合电极的比容量约为纯SnO2电极的3倍,比能量密度为42.4W˙h/kg,库仑效率为96%,且经500次充放电后其比容量衰减仅4.5%;该电极充分体现了两种材料的协同效应,使得两种材料的性能得到了相互补充。Song等[61]通过化学氧化聚合分别制备了聚苯胺、聚苯胺-Nafion、聚苯胺-Nafion-RuO2电极材料(式2为RuO2水合物充放电过程),讨论了RuO2水合物不同质量分数下复合物形貌对电容性能影响,发现含量约为50%时最佳;在1mol/LH2SO4溶液进行电容性能的测试,分别采用不同扫描速率时3种电极的比容量大小始终是:聚苯胺-Nafion-RuO2>聚苯胺-Nafion>聚苯胺,并且聚苯胺-Nafion-RuO2电极材料的比容量达475F/g,3种电极经1000次充放电后测试其比容量衰减分别为:20%(聚苯胺-Nafion-RuO2)、16%(聚苯胺-afion)、38%(聚苯胺),该方法所得电极具有较高的比容量和较好的稳定性能可为高比电容器的开发提供借鉴。

Mallouki等[62]通过化学聚合制备了聚吡咯-Fe2O3纳米复合电极,其颗粒大小在400—500nm,且Fe2O3纳米颗粒附着在聚吡咯主链上充当支撑聚合物生长的支持物;讨论了不同配比、不同电解液中复合电极的电容性能,发现当聚吡咯含量在70—82wt%时复合材料的电导率最好且阻抗最低;在1mol/LPC/NEt4BF4溶液中测试有着高比容量和高稳定性,且经过1000次充放电后比容量衰减仅有3%。Graeme等[63]通过化学聚合制备了聚吡咯-磷钼酸盐多孔复合电极,讨论了两种物质配比、多孔的含量对电容性能的影响;发现配比在10∶1(吡咯与磷钼酸盐)且多孔含量应该适中时性能较好,在0.5mol/LH2SO4中测试其比容量高达700F/g,经过4000次充放电后比容量衰减仅有10%,并且换成其他电解液时,在1000—2000次充放电后比容量衰减也是10%;同时指出,该复合电极比先前报道的比容量(240F/g)提高了很多,这一方法为超级电容器的实际应用迈出了很重要的一步。Zang等[64]通过无模板法在pH=6.8的磷酸缓冲液中制备了排列较好的聚吡咯纳米结构,然后利用溅射法在制备好的聚吡咯上进行RuO2的复合,得到聚吡咯-RuO2复合电极材料;在1mol/LH2SO4溶液中测试电容性能,发现复合电极的比容量是无RuO2复合的聚吡咯电极的3倍(大约302F/g),且复合电极稳定性较好,经300次充放电测试其比容量仍然保持90%,该复合电极材料有望在微电容电器中得到应用。

原标题:导电聚合物超级电容器电极材料
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>电极材料查看更多>导电聚合物查看更多>