登录注册
请使用微信扫一扫
关注公众号完成登录
图 16 PDA包覆SiO 2 颗粒及PE膜结构示意
图 17 纳米CeO 2 不同浓度(a) 0 wt.%, (b) 10 wt.%, (c) 50wt.%, (d) 100 wt.%, (e) 150 wt.%, (f) 200 wt.%.下复合隔膜表面孔洞结构SEM图
结合陶瓷材料和聚合物材料的各自优点,华南师范大学的李伟善课题组(2016)报道了在一种在PE隔膜表面涂覆掺入了CeO 2 陶瓷颗粒的四元聚合物P(MMA-BA-AN-St)的复合隔膜,其中MMA单体起到提高电解质亲和性的作用,St单体起到提高隔膜机械性能的作用,AN和BA单体则提供粘结力和提高离子电导率,并首次研究了聚合物涂层中陶瓷颗粒含量对复合隔膜性质的影响,陶瓷颗粒的加入影响聚合物涂层中聚合物的结晶度,如图 17所示,随着陶瓷含量的增多,涂层内部孔洞分布更加紧密,但是大量陶瓷的加入会使孔洞数目变小,孔径尺寸变大,孔隙率变小。因此,电解液保持率和离子电导率则随着陶瓷浓度先增加后降低 ,不同浓度的陶瓷含量会使隔膜具有不同的性能优势。
2.4 原位复合
原位复合是在成膜浆料中预先分散进陶瓷颗粒或聚合物纤维等,通过湿法双向拉伸或者静电纺丝制成隔膜,相比于直接在隔膜表面复合陶瓷层和聚合物,原位复合隔膜中的有机相能牢牢包裹住陶瓷颗粒及纤维解决了涂层在表面脱落的问题,同时复合于基膜内的陶瓷颗粒及纤维使得原有的隔膜孔洞结构改变,形成均一的开放式孔洞结构,但是原位复合过程中,加入的陶瓷颗粒的量会受到限制,因为一旦其百分比高于一定的量颗粒会发生团聚从而影响电池的循环性能。
无机材料分布在复合隔膜的三维结构中,形成一定的刚性骨架,在高温环境下具有极高的稳定性,从而防止隔膜在热失控条件下发生严重热收缩;另外加入陶瓷颗粒能阻止聚合物结晶,并形成陶瓷颗粒与聚合物之间界面均有助于隔膜电化学性能的提高。陶瓷颗粒的加入为隔膜表面引入了大量微孔从而提高了隔膜的表面积,直接提高了隔膜的离子导电率。
因为直接在浆料中加入陶瓷颗粒会受到浓度的限制而使得复合隔膜的性能并不会得到显著提升,康奈尔大学的Yong Lak Joo课题组(2017)报道了一种静电纺丝制备PAN/聚合物陶瓷纳米纤复合隔膜,它是将有机多分子硅醚和正硅酸四乙酯(TEOS)按不同比例制成前驱体加入到浆料中,在纺丝过程中这样的前驱体会形成独立的陶瓷纤维网络,如图 18 纤维 SEM 图所示,在提升复合隔膜热稳定性的同时,影响聚合物的结晶度使得隔膜中无定型区增多从而提升了离子电导率,随着陶瓷颗粒浓度增大,电导率增大。
图 18 (a-c)40%wtTEOS、(d-f)20%wtTEOS、(g-i)0%wtTEOS隔膜截面SEM图
同样为提高原位复合隔膜中陶瓷的负载量,东华理工大学的那兵课题组(2017)提出使用抽滤的方式将陶瓷纳米颗粒加入到静电纺丝PVDF/PAN隔膜中,其制备过程如图 19 所示,得到的复合隔膜陶瓷负载量达到 67.5%,其中陶瓷颗粒分布均匀并没有团聚,隔膜表现出优良的综合性能。
图 19 抽滤复合陶瓷过程示意图
北 卡 罗 来 纳 州 立 大 学 的 张 向 武 课 题 组(2016)同样报道了一种SiO2 /PAN纳米纤维复合隔膜,其通过溶胶凝胶法将正硅酸乙(TEOS)加入PAN浆料中,在杂化结构中形成无机网络提高无机纳米颗粒和有机基体间的相容性,在有聚合物存在的情况下TEOS发生原位水解缩聚,并通过静电纺丝法制造了一种高含量无机颗粒分散均匀的有机-无机复合结构隔膜,通过此种方法提高了复合隔膜中SiO 2 的含量,且随着SiO 2 的增多,SiO 2和聚合物链之间的排斥力增大,在纺丝过程中改变溶液性质减少聚合物链之间的复合使隔膜中纤维直径减小,从而使该隔膜的孔径尺寸减小,孔隙率增多,进而提高了隔膜的电解液保持率。SiO 2 的增多能吸收电解液中的杂质如H 2 O、HF、O 2 等保持隔膜与电解液的接触稳定性,这些性质的提高使得SiO 2 /PAN复合隔膜表现出良好的循环性能和倍率性能。
瑞士乌普萨拉大学的Chen Huang等(2017)将ZrO 2 纤维作为基底掺入聚合物PVDF-HPF中,通过相转化法制造隔膜,对比了不同ZrO 2 纤维浓度以及ZrO 2 颗粒做基底时隔膜的机械性能、热稳定性、电化学性能等,无机纤维互相之间通过摩擦力和凝聚力在多孔有机大分子形成的聚合物中提供良好的机械支撑,比使用无机颗粒作为隔膜基底具有更完整的结构,如图 20 所示 75%的ZrO 2 纤维复合隔膜相比 75%的ZrO 2 颗粒复合隔膜燃烧性能更好,随着纤维浓度的增加,隔膜的强度增加到 5Mpa,且具有合适的电解液吸液率。
图 20 75%的ZrO 2 颗粒复合隔膜与 75%的ZrO 2 纤维复合隔膜燃烧性能
斯坦福大学崔屹课题组(2017) 开发了一种“核-壳”结构微米纤维,利用静电纺丝技术将防火剂磷酸三苯酯(TPP)作为纤维内核,并用聚偏氟乙烯-六氟丙烯(PVDF-HFP)作为高分子外壳将其包裹,由此复合纤维无序堆叠得到自支撑的独立膜,如图 21 该复合膜在电池正常工作时防火剂被包裹在PVDF-HFP聚合物内防止其与电解液接触,减少防火剂的添加对电池电化学性能的影响,而在电池发生热失控的时候,PVDF-HFP外壳部分熔化使内部防火剂TPP释放到电解液中起到抑制燃烧的作用。实验对比了商业PE隔膜和TPP@PVDF-HFP复合隔膜与不同电解液组合的石墨电极循环性能,结果显示在电池正常工作时,由于高分子保护层的存在,该种隔膜对石墨性能没有明显负面影响,并通 过 点 火 试 验 测 试 了 商 业 PE 隔 膜 和TPP@PVDF-HFP燃烧时间以及两种隔膜的吸热峰,结果显示加入TPP的隔膜能有效提高隔膜的安全性能,这种核壳结构的纤维隔膜制备工艺简单,原料易得,适合商业化大规模生产。
图 21 “核-壳”结及热触发时聚合物外壳熔化构示意图
3、隔膜制备技术
传统商业化微孔聚烯烃隔膜的制备工艺分为干法单向拉伸、干法双向拉伸和湿法三种,不管是湿法还是干法,均有拉伸这一工艺步骤,目的是使隔膜产生微孔。
3.1 干法拉伸
干法单向拉伸工艺最先由美日两国公司开发,在融熔挤出后得到垂直挤出方向的片晶结构,随后通过单向拉伸使片晶结构分离而得到扁长的微孔结构,膜的纵向热收缩厉害,而没有进行拉伸的横向机械强度较低。我国中科院化学研究所于 20世纪 90 年代发明干法双向拉伸技术,原理是在聚丙烯中加入具有成核作用的β晶型改剂,在拉伸过程中受热应力作用发生晶型转变形成微孔,由于进行了双向拉伸,在两个方向均会受热收缩,产品横向拉伸强度明显高于干法单向拉伸工艺生产的隔膜,具有较好的物理性能和力学性能,双向力学强度高,微孔尺寸及分布均匀。干法拉伸工艺生产工序简单,生产效率高,但是其生产的隔膜厚度较大,孔径及孔隙率难以控制,造成隔膜均一性较差,容易导致电池内短路。
3.2 湿法造膜
湿法造膜的过程是将树脂和增塑剂等混合熔融,经过降温相分离、拉伸后用萃取剂将石蜡油萃取出再经过热处理成型,作为下一代商业化隔膜的发展方向,具有孔隙率和透气性较高、隔膜厚度超薄、隔膜性质均一等优点,但是其工艺复杂,对生产设备要求较高,生产过程中使用的有机溶剂回收困难而造成环境污染。近几年,锂电池隔膜的制备工艺呈现多样化趋势,除制备传统商品化微孔聚烯烃隔膜的干法工艺和湿法工艺外,静电纺丝工艺、相转化工艺、熔喷纺丝工艺和湿法抄造(抄纸)工艺等新兴制备工艺也在蓬勃发展。
3.3 静电纺丝技术
静电纺丝工艺是近年来发展出的一种制备纳米纤维及非纺织隔膜的重要方法之一。它直接从聚合物溶液中制备聚合物纤维,直径从 40 到 2000纳米不等 [58-59] ,其原理是先将聚合物溶液或熔体在强点场中,在电场力与表面张力的作用下,针头上的液滴会由球形变为泰勒锥(Taylor),克服表面张力之后在圆锥尖端延展形成纤维束, 随后 纤维束被不断拉伸,并伴随溶剂挥发,最后形成多层纳米纤维叠加的网状膜 [60] 。静电纺丝法制备的隔膜以纳米纤维隔膜为主,是对新型隔膜材料的创新性研究,但同样具有非纺织隔膜机械性能较差的问题,另外,静电纺丝造膜产量较低。
3.4 湿法抄造工艺
湿法抄造是制造隔膜类材料常用的方法,具体过程是将短细的纤维与粘结剂混合分散于浆料中,随后采用转移涂布的方式将浆料涂布于载体上,最后经过脱水/溶剂、干燥、收卷得到隔膜。我国抄纸工艺技术简单成熟且成本较低,规模产量大,湿法抄纸技术制备的无纺布隔膜是锂离子电池隔膜的一个重要发展方向,抄纸工艺技术简单,成本较低,且能大规模生产,但是依然有非织造隔膜的共同缺点,机械强度低。例如 Zhang等(2014)采用湿法抄造工艺成功制备了阻燃纤维素复合隔膜,由于纤维素在自然界中大量存在,因此该制备方法大大降低了隔膜制备的成本。实验表明,该纤维素基复合隔膜对电解液具有优良的润湿性和吸液率,且表现出不错的阻燃性等,采用该复合隔膜组装的电池也具有良好的倍率性能。
3.5 熔喷纺丝工艺
熔喷工艺是以高聚物溶体为原料直接制备超细纤维或纤维网产品的一步法技术。该法所制备的无纺布有效幅宽为 900 mm以上,单丝直径最小能达到 1-2 μm,熔喷温度可以达到 300℃,热空气温度可控。熔喷纺丝具有技术成熟,安全性好,成本较低,等优点,有望用于生产热稳定性好的隔膜应用在动力电池中,例如,采用熔喷法制备聚酯类或聚酰胺类非织造隔膜具有优异的尺寸稳定性。但是该工艺仍然存在能耗大,所制备的无纺布膜孔径过大等缺点。
3.6 相转化法
相转化法可以获得各种多孔结构的膜,以满足不同二次电池技术的要求,因此,相转化法已广泛应用于二次电池技术中多孔膜的制备。相转化法采用一定组成的均相聚合物溶液作为铸膜液,通过一定的物理方法使聚合物溶液在周围环境中进行溶剂和非溶剂的传质交换,从而改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,转变成三维大分子网格式的凝胶结构,最终固化成膜。相转化法工艺简单,但是成本较高,制造过程中需要大量溶剂。
4、展望
我国锂电池隔膜行业处于高速发展的阶段,2016 年中国产业界锂电池隔膜产量为 9.29 亿平方米,与 2015 年相比同比增长 33.03%,特别是国产湿法隔膜受下游需求影响,同比增长在 50%以上,湿法隔膜逐渐成为主流的技术路线,但同时国产隔膜整体技术水平与国际一线公司技术水平还有较大差距。在技术发展领域,传统的聚烯烃隔膜已无法满足当前锂电池的需求,高孔隙率、高热阻、高熔点、高强度、对电解液具有良好浸润性是今后锂离子电池的发展方向。为实现这些技术指标,可以从以下三个方面入手,第一,研发新材料体系,并发展相应的生产制备技术,使其尽快工业化;第二,隔膜涂层具有成本低、技术简单、效果显著等优点,是解决现有问题的有效手段;第三,原位复合制备工艺较复杂,可以作为未来隔膜的研究方向。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
北极星储能网获悉,5月12日,东峰集团在投资者互动平台上表示,公司按照“转型提速、重点投入、优化布局”的经营理念,持续加大在新型材料及I类医药包装领域的资金投入与资源布局。在新型材料业务方面,公司通过不断提升自主研发能力以及与行业内领先企业合作,开发多款新产品,在新能源动力电池、储能
北极星储能网获悉,5月7日上午,厚生新能源重庆基地首线投产暨二期开工活动举行。重庆厚生基地位于铜梁高新区,占地580亩,总投资65亿元,规划年产能近30亿㎡隔膜。一期首线已投产,剩余产线将于2025年陆续投产,一期达产后将年产锂电池隔膜12亿㎡;二期计划2027年底全部投产。项目由江苏厚生新能源科
北极星储能网获悉,4月29日,恩捷股份公布2025年一季报,公司营业收入为27.3亿元,同比上升17.2%;归母净利润为2599万元,同比下降83.6%;扣非归母净利润为2920万元,同比下降80.4%;经营现金流净额为1.24亿元,同比下降72.7%;EPS(全面摊薄)为0.0268元。截至一季度末,公司总资产477.46亿元,较上年度
北极星储能网获悉,4月21日,新能源新材料领域领先企业东峰集团发布2024年年报。2024年,公司实现营业总收入14.24亿元,同比下降45.87%;归母净利润亏损4.89亿元,上年同期盈利1.51亿元;扣非净利润亏损4.96亿元,上年同期盈利1.64亿元;经营活动产生的现金流量净额为3353.44万元,同比增长327.08%;报
沧州明珠4月15日发布公告,收到控股股东河北沧州东塑集团股份有限公司的《通知函》,由于东塑集团和河北沧州交控集团有限责任公司未能最终就本次交易方案所涉事项达成共识,目前双方已决定终止筹划本次交易事项。根据此前协议,东塑集团原计划转让11%股份并委托7.77%股份表决权,届时交控集团将成为沧
北极星储能网获悉,4月3日晚间,恩捷股份发布公告,下属子公司SEMCORPManufacturingUSALLC(以下简称“美国恩捷”)与美国某知名汽车公司(以下称“本次合作客户”)签订《供应协议》。本次合作客户预计2026年至2030年向美国恩捷(及其关联公司)采购约9.73亿平方米的锂电池隔离膜,具体以采购订单为准
3月20日,中材科技股份有限公司(以下简称“中材科技”或“公司”)发布《2024年年度报告》。报告披露,2024年,中材科技实现营业收入239.84亿元,同比下降7.37%;实现归属于上市公司股东的净利润8.92亿元,同比下降59.89%;实现归属于上市公司股东的扣除非经常性损益的净利润3.84亿元,同比下降80.48%
据北极星储能网不完全统计,2025年1月共发布了94项有关储能的政策。国家层面16个,地方层面78个。地方政策中,新能源配储类7个,补贴类12个,电力市场类10个,电价类7个。另外,各地公布的重大项目清单中,涉及储能电站项目总计101个、总规模超14.3GW/29.9GWh。新能源配储类政策数量有所减少,广东、大
北极星储能网获悉,2月20日晚间,星源材质发布公告,公司于2025年2月20日召开第六届董事会第十一次会议、第六届监事会第九次会议,审议通过了《关于变更部分募集资金用途及新增募集资金投资项目的议案》,同意公司将2021年度向特定对象发行A股股票募集资金投资项目“高性能锂离子电池湿法隔膜及涂覆隔
近期,佛塑科技与金力股份的收购事宜正在紧锣密鼓地推进。自去年起,佛塑科技计划“蛇吞象”金力股份的传闻便传得沸沸扬扬。这一举动,被市场视为佛塑科技在业绩困境中的一次自救行动。然而,此时通过收购金力股份切入隔膜领域,对佛塑科技真的是明智之举吗?01佛塑科技的转型之路成立于1988年的佛塑科
2024年,中国锂电池材料行业在产能结构性过剩与需求增速减缓的多重压力下,交出了一份“量增价跌”的答卷。GGII统计了2024年中国38家主要锂电材料上市企业财务数据,以剖析行业发展态势。01行业全景:营收普降,利润分化加剧2024年,中国锂电材料企业整体业绩承压,四大主材营收合计均出现下滑,其中正
动力电池出货量同比增长41%,储能电池出货量增长120%。高工产研锂电研究所(GGII)初步调研数据显示,2025Q1中国锂电池出货量314GWh,同比增长55%。其中动力、储能电池出货量分别为210GWh、90GWh,同比增长分别为41%、120%。2024-2025Q1中国锂电池出货量(GWh)说明:动力锂电池含乘用车、商用车、工程
为满足海外市场客户需求,优化全球产能布局,提升整体竞争力,中国电池产业链企业加快了海外建厂步伐。今年以来,众厂商对马来西亚的布局力度明显提速,截至目前投资金额将近200亿元人民币。今年4月,仅仅十天之内就有两家中国企业加码马来西亚市场。4月24日,金杨股份公告称,该公司拟投资建设马来西
北极星电力网获悉,江西省发改委下达2025年第一批省重点建设项目计划,涉及91个电力能源项目,整理如下:一、建成投产项目江西赣能上高2×1000MW清洁煤电项目国能神华九江电厂2×1000兆瓦二期扩建工程风电、光伏项目(9项)三峡新能源万安弹前01.03风电项目江西省彭泽县棉船风电项目时代绿能奉新县赤田
北极星储能网获悉,2月20日晚间,星源材质发布公告,公司于2025年2月20日召开第六届董事会第十一次会议、第六届监事会第九次会议,审议通过了《关于变更部分募集资金用途及新增募集资金投资项目的议案》,同意公司将2021年度向特定对象发行A股股票募集资金投资项目“高性能锂离子电池湿法隔膜及涂覆隔
近期,佛塑科技与金力股份的收购事宜正在紧锣密鼓地推进。自去年起,佛塑科技计划“蛇吞象”金力股份的传闻便传得沸沸扬扬。这一举动,被市场视为佛塑科技在业绩困境中的一次自救行动。然而,此时通过收购金力股份切入隔膜领域,对佛塑科技真的是明智之举吗?01佛塑科技的转型之路成立于1988年的佛塑科
近日,研究机构EVTank、伊维经济研究院联合中国电池产业研究院共同发布了2025年度锂离子电池四大主要材料行业发展白皮书。EVTank数据显示,2024年度,中国锂离子电池四大主要材料总产值3472.4亿元,同比下滑24.8%,已经连续两年出现同比下滑。据EVTank分析,2024年度,中国锂离子电池四大主要材料的出
北极星储能网获悉,据高工产研锂电研究所(GGII)统计数据显示,2024年中国锂电池出货量1175GWh,同比增长32.6%,其中动力、储能、数码电池出货量分别为780+GWh、335+GWh、55+GWh,同比增长23%、64%、14%。从技术路线占比看,2024年磷酸铁锂动力电池出货量560+GWh,占比动力电池总出货量比例达到72%。2
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂离子电池隔膜行业发展白皮书(2025年)》。白皮书数据显示,2024年,中国锂离子电池隔膜出货量同比增长28.6%,达到227.5亿平米,其中湿法隔膜出货量达到174.9亿平米,干法隔膜出货量达到52.6亿平米。从不同类型隔膜出货量来看,EVTank统计数
今年最后两个月,锂电池隔膜大单频现,显示出下游厂商旺盛的需求。11月24日,隔膜龙头恩捷股份发布公告,公司控股子公司上海恩捷与亿纬锂能签订《全球战略合作框架协议》,2025年至2031年期间,亿纬锂能预计将在东南亚、欧洲等市场向上海恩捷及关联公司采购电池隔膜不少于30亿平方米。在此之前两天,另
从10月投资项目来看,电池项目占比依旧过半,但投资总额及项目平均投资额均大幅下降,且以初创企业及二三线企业为主,国内产业链企业投资热情已大幅消退,对待扩产态度愈发谨慎。中汽协数据显示,进入十月,国家以旧换新政策对汽车消费拉动效应明显,多地车展与促销活动如火如荼,企业新车型密集投放,
新型储能行业的迅速崛起令人瞩目,而技术创新在其中发挥着至关重要的作用。在“技术引领市场”的战略思想指导下,南都电源围绕高安全和长寿命的核心指标,从材料、电芯、PACK、BMS等方面进行多维度创新,加快新型储能核心技术的研发、成果转化和产业化应用。材料技术保障电池本征安全性材料是保障电池
锂硫电池因为具有极高的能量密度和理论比容量,而且作为正极主要材料的单质硫储量丰富、生产成本较低,被认为是未来储能领域中最具应用前景的一类电池。但是在其实际应用之前还有一些技术难题亟待解决,比如活性材料硫的导电性差、正极体积膨胀、穿梭效应等问题严重影响了电池的循环稳定性,尤其是可溶
双杰电气近日发布公告,公司拟将持有的天津东皋膜技术有限公司股权和债权认购河北金力新能源科技股份有限公司(简称“金力公司”)增发股份。天津东皋膜技术有限公司成为金力公司的控股子公司。交易完成后,公司不再对天津东皋膜技术有限公司编制的财务报表进行合并。结合金力公司之上市计划,根据各方
锂离子电池因其高能量密度和长循环寿命等优点而被广泛应用于移动电子设备和动力装置中,然而,特斯拉事件、三星手机事件等,频繁发生的锂离子电池安全事故逐渐引起了人们的关注。其中,电池隔膜(图2)作为锂离子电池的重要组成部分之一,可提供锂离子传输通道,并且可防止正、负极接触发生短路,对锂
高孔隙率、高热阻、高熔点、高强度、对电解液具有良好浸润性是今后锂电池隔膜材料的发展方向。那么,在技术发展领域,除了聚烯烃隔膜还有哪些新型隔膜材料?研究者们在传统聚烯烃隔膜的基础上发展了各种四种新型锂电池隔膜材料。材料一:PMIAPMIA是一种芳香族聚酰胺,在其骨架上有元苯酰胺型支链,具有
作为锂电池的关键材料,电池隔膜在其中扮演着电子隔绝的作用,阻止正负极直接接触,允许电解液中锂离子自由通过,同时,隔膜对于保障电池的安全运行也起至关重要的作用。我国锂电池隔膜行业处于高速发展的阶段,湿法隔膜逐渐成为主流的技术路线,但同时国产隔膜整体技术水平与国际一线公司技术水平还有
北极星储能网获悉,《锂离子电池用聚烯烃隔膜》标准将于2019-01-01起开始实施。标准规定了锂离子电池聚烯烃隔膜(简称隔膜)的术语与定义、分类、要求、试验方法、检验规则、包装、标志、运输及贮存。适用于以聚烯烃树脂为主要原料的锂离子电池用隔膜,锂离子电池用涂层聚烯烃隔膜或使用其他材质的锂离
6月7日,国家市场监督管理总局、国家标准化管理委员会发布了《中华人民共和国国家标准公告(2018年第9号)》,批准发布《工业硼酸》等393项国家标准和7项国家标准外文版。其中,包括由全国碱性蓄电池标准化技术委员会(SAC/TC77)归口,全国碱性蓄电池标准化技术委员会和中国化学与物理电源行业协会组织相
近日,国家标准化管理委员会公布关于批准发布《工业硼酸》等393项国家标准和7项国家标准外文版的公告,其中涉及新能源汽车领域的国标共4项。GB/T36277-2018《电动汽车车载静止式直流电能表技术条件》、GB/T36282-2018《电动汽车用驱动电机系统电磁兼容性要求和试验方法》、GB/T36278-2018《电动汽车充
研究背景安全性是制约高比能、大容量锂离子电池规模应用的重要技术问题,热失控是导致电池发生爆炸、燃烧等不安全行为的根本原因。从电化学角度来看,在锂离子电池内部建立一种自激发热保护机制,切断危险温度下电池内部的离子或电子传输,关闭电池反应,是解决这一问题的有效途径。基于这一考虑,近年
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!